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Course Companion denition 
The IB Diploma Programme Course Companions are 

resource materials designed to support students 

throughout their two-year Diploma Programme course 

of  study in a particular subject. They will help students 

gain an understanding of  what is expected from the 

study of  an IB Diploma Programme subject while 

presenting content in a way that illustrates the purpose 

and aims of  the IB. They reect the philosophy and 

approach of  the IB and encourage a deep understanding 

of  each subject by making connections to wider issues 

and providing opportunities for critical thinking.

The books mirror the IB philosophy of  viewing the 

curriculum in terms of  a whole-course approach; the 

use of  a wide range of  resources, international 

mindedness, the IB learner prole and the IB Diploma 

Programme core requirements, theory of  knowledge, 

the extended essay, and creativity, activity, service 

(CAS).

Each book can be used in conjunction with other 

materials and indeed, students of  the IB are required 

and encouraged to draw conclusions from a variety of  

resources. Suggestions for additional and further 

reading are given in each book and suggestions for how 

to extend research are provided.

In addition, the Course Companions provide advice and 

guidance on the specic course assessment requirements 

and on academic honesty protocol. They are distinctive 

and authoritative without being prescriptive.

IB mission statement
The International Baccalaureate aims to develop 

inquiring, knowledgable and caring young people who 

help to create a better and more peaceful world through 

intercultural understanding and respect.

To this end the IB works with schools, governments 

and international organizations to develop challenging 

programmes of  international education and rigorous 

assessment.

These programmes encourage students across the 

world to become active, compassionate, and lifelong 

learners who understand that other people, with their 

dierences, can also be right.

The IB learner Prole
The aim of  all IB programmes is to develop 

internationally minded people who, recognizing their 

common humanity and shared guardianship of  the 

planet, help to create a better and more peaceful world. 

IB learners strive to be:

Inquirers They develop their natural curiosity. They 

acquire the skills necessary to conduct inquiry and 

research and show independence in learning. They 

actively enjoy learning and this love of  learning will be 

sustained throughout their lives.

Knowledgable They explore concepts, ideas, and issues 

that have local and global signicance. In so doing, they 

acquire in-depth knowledge and develop understanding 

across a broad and balanced range of  disciplines.

Thinkers They exercise initiative in applying thinking 

skills critically and creatively to recognize and approach 

complex problems, and make reasoned, ethical 

decisions.

Communicators They understand and express ideas 

and information condently and creatively in more 

than one language and in a variety of  modes of  

communication. They work eectively and willingly in 

collaboration with others.

Principled They act with integrity and honesty, with a 

strong sense of  fairness, justice, and respect for the 

dignity of  the individual, groups, and communities. 

They take responsibility for their own actions and the 

consequences that accompany them.

Open-minded They understand and appreciate their 

own cultures and personal histories, and are open to 

the perspectives, values, and traditions of  other 

individuals and communities. They are accustomed to 

seeking and evaluating a range of  points of  view, and 

are willing to grow from the experience.

Caring They show empathy, compassion, and respect 

towards the needs and feelings of  others. They have a 

personal commitment to service, and act to make a 

positive dierence to the lives of  others and to the 

environment.

Risk-takers They approach unfamiliar situations and 

uncertainty with courage and forethought, and have 

the independence of  spirit to explore new roles, ideas, 

and strategies. They are brave and articulate in 

defending their beliefs.

Balanced They understand the importance of  

intellectual, physical, and emotional balance to achieve 

personal well-being for themselves and others.

Reective They give thoughtful consideration to their 

own learning and experience. They are able to assess and 

understand their strengths and limitations in order to 

support their learning and personal development.
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A note on academic honesty
It is of  vital importance to acknowledge and 

appropriately credit the owners of  information 

when that information is used in your work. After 

all, owners of  ideas (intellectual property) have 

property rights. To have an authentic piece of  

work, it must be based on your individual and 

original ideas with the work of  others fully 

acknowledged. Therefore, all assignments, written 

or oral, completed for assessment must use your 

own language and expression. Where sources are 

used or referred to, whether in the form of  direct 

quotation or paraphrase, such sources must be 

appropriately acknowledged.

How do I acknowledge the 
work of others?

The way that you acknowledge that you have 

used the ideas of  other people is through the use 

of  footnotes and bibliographies.

Footnotes (placed at the bottom of  a page) or 

endnotes (placed at the end of  a document) are to 

be provided when you quote or paraphrase from 

another document, or closely summarize the 

information provided in another document. You 

do not need to provide a footnote for information 

that is part of  a ‘body of  knowledge’. That is, 

denitions do not need to be footnoted as they 

are part of  the assumed knowledge.

Bibliographies should include a formal list of  

the resources that you used in your work. The 

listing should include all resources, including 

books, magazines, newspaper articles, Internet-

based resources, CDs and works of  art. ‘Formal’ 

means that you should use one of  the several 

accepted forms of  presentation. You must provide 

full information as to how a reader or viewer  

of  your work can nd the same information.  

A bibliography  is compulsory in the extended  

essay.

What constitutes misconduct?
Misconduct is behaviour that results in, or may 

result in, you or any student gaining an unfair 

advantage in one or more assessment component. 

Misconduct includes plagiarism and collusion.

Plagiarism is dened as the representation of  the 

ideas or work of  another person as your own. 

The following are some of  the ways to avoid 

plagiarism:

● Words and ideas of  another person used to 

support one’s arguments must be 

acknowledged.

● Passages that are quoted verbatim must be 

enclosed within quotation marks and 

acknowledged.

● CD-ROMs, email messages, web sites on the 

Internet, and any other electronic media must 

be treated in the same way as books and 

journals.

● The sources of  all photographs, maps, 

illustrations, computer programs, data, graphs, 

audio-visual, and similar material must be 

acknowledged if  they are not your own work.

● Words of  art, whether music, lm, dance, 

theatre arts, or visual arts, and where the 

creative use of  a part of  a work takes place, 

must be acknowledged.

Collusion is dened as supporting misconduct by 

another student. This includes:

● allowing your work to be copied or submitted 

for assessment by another student

● duplicating work for dierent assessment 

components and/or diploma requirements.

Other forms of misconduct include any action 

that gives you an unfair advantage or aects the 

results of  another student. Examples include, 

taking unauthorized material into an examination 

room, misconduct during an examination, and 

falsifying a CAS record.
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About the book

The new syllabus for Mathematics Higher Level 

Option: Sets is thoroughly covered in this book. 

Each chapter is divided into lesson-size sections 

with the following features:

Did you know? History

Extension Advice

The Course Companion will guide you through 

the latest curriculum with full coverage of  all 

topics and the new internal assessment. The 

emphasis is placed on the development and 

improved understanding of  mathematical 

concepts and their real life application as well as 

prociency in problem solving and critical 

thinking. The Course Companion denotes 

questions that would be suitable for examination 

practice and those where a GDC may be used. 

Questions are designed to increase in diculty, 

strengthen analytical skills and build condence 

through understanding. 

Where appropriate the solutions to examples are 

given in the style of  a graphics display calculator. 

Mathematics education is a growing, ever 

changing entity. The contextual, technology 

integrated approach enables students to become 

adaptable, lifelong learners.

Note: US spelling has been used, with IB style for 

mathematical terms.

About the authors

Lorraine Heinrichs has been teaching 

mathematics for 30 years and IB mathematics for 

the past 16 years at Bonn International School. 

She has been the IB DP coordinator since 2002. 

During this time she has also been senior 
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member of  the curriculum review team.

Palmira Mariz Seiler has been teaching 

mathematics for over 25 years. She joined the IB 

community in 2001 as a teacher at the Vienna 
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worked as Internal Assessment moderator in 
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workshop leader and deputy chief  examiner for 

HL mathematics. Currently she teaches at 

Colegio Anglo Colombiano in Bogota, Colombia.

Marlene Torres-Skoumal has taught IB 

mathematics for over 30 years. During this time, 

she has enjoyed various roles with the IB, 

including deputy chief  examiner for HL,  

senior moderator for Internal Assessment, 

calculator forum moderator, workshop leader, 

and a member of  several curriculum review 

teams.
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The development of Set Theory2

The  
development 
of Set Theory

1

CHAPTER OBJECTIVES:

8.1  Finite and innite sets; subsets; Operations on sets: union, intersection, 

complement, set difference, symmetric difference; Venn diagrams;  

De Morgan’s laws: distributive, associative and commutative laws for union  

and intersection.

8.2 Ordered pairs: the Cartesian product of two sets; relations: equivalence 

relations, equivalence classes and partitions.

Before you start

1 Given that α, β are the roots of  the 

equation z2 − 4z + 13 = 0, nd the value 

of  α( − α) + β( − β ), without solving 

the quadratic equation.

  Using Viete’s formulas for sum and 

dierence of  roots:

α + β = 4, α β = 3

α ( − α) + β( − β )

 = α − α 2 + β − β 2

 = α + β − (α2 + β 2)

 = α + β − ((α + β )2 − 2αβ )

 = 4 − (6 − 26) = 4

1 a  Given that α, β are the roots of  the equation  

z 
2 − 4z + 1 = 0,  

nd the value of  α β
α β

+⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

1 1
2 2

 b  If  α and β are the roots of  2x
2 + 3x + 4 = 0,  

show that the roots of  the equation  

8z
2 + 7z + 8 = 0 are 

α β

β α
and without solving  

either of  the two given equations.



Chapter 1 3

The language of sets

In this chapter we will be looking at the basic elements of  set theory.  

Georg Cantor, 9th century German mathematician who is best  

known for his creation of  the language of  sets, explained the notion  

of  a set as “... the taking together into a whole of  distinct well-dened  

objects of  our intuition or thought”. He went on to study the relation  

between sets, and to do this he associated with each set a cardinal  

number which would help him compare sizes, not only of  nite sets  

but also innite ones. Stated simply, by comparing dierent innite  

sequences Cantor discovered that there are dierent sizes of  innity.  

The innite size of  the set of  Natural numbers, made up of  discrete  

elements, is smaller than the innite size of  the set of  real numbers,  

which is continuous. The Natural numbers, Integers and Rational  

numbers are all said to be countable, innite and have the same size  

(cardinality). He called the size of  the countable innite sets 
0
 whereas  

the innity associated with the uncountable real numbers was 
1
.  

He further made a conjecture that became known as the Continuum  

Hypothesis. In his conjecture Cantor says that there is no set whose size  

is between 
0
 and 

1
. Cantor never proved this, and the Continuum  

Hypothesis was the rst on the famous David Hilbert list of  unsolved  

problems at the turn of  the 20th century. Kurt Gödel and Paul Cohen  

worked extensively on this conjecture between 930 and 966. Their  

work changed the focus of  mathematics in the second half  of  the  

20th century and opened doors to many other theories.

A cardinal number 

is one which 

denotes quantity or an 

amount of something.
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The Hilbert Hotel: Hotel Innity is a thought experiment created by the  

German mathematician David Hilbert. When Hotel Innity rst opened,  

it advertised itself as the hotel that always has room for one more guest! 

Initially everything was ne, as there were more than enough rooms for 

anyone wanting to stay. One week, however, it was an especially busy time, 

and an innite number of people were staying in the hotel, so it was full! How 

does the hotel live up to its promise, that there is always room for one more? 

At this point, Hilbert asked his friend Cantor for help in solving his hotel  

problem. Cantor said that each guest should move to the room number that  

was twice the room number they originally occupied. This way all the odd  

numbered rooms became available. Cantor however did warn Hilbert that  

there were situations when it would be very difcult to nd a way of allocating 

rooms. For example, suppose an innite number of buses show up at the  

hotel, with an innite number of people in each bus? You might want to  

research this intriguing problem, and all its different aspects!

1.1 Set denitions and operations

Much of  the rst part of  this chapter you will have already encountered,  

since sets is the basic language of  most of  the mathematics you have  

studied, and is also included in the Prior Learning of  the Higher Level  

syllabus.

A set S is a collection of  objects, and if  x is one of  these objects  

we say that x is an element of  S. We denote this by x ∈S

For example, the subjects oered in the IB diploma form a set.

The number of  elements in a set S is called the cardinality of  the set  

and we will denote it by n(S). In some books it is denoted by  

card (S ) or |S|.

A nite set is one with a nite number of  elements, i.e. a nite set is  

one whose cardinality is a natural number. If  a set has an innite  

number of  elements then we say that the set is innite.

The set A = {l, 3, 5, 7, 9} is nite whereas the set B = {2, 4, 6, 8, ...}  

is innite.

There is exactly one set that has no elements and we call this the  

empty set, denoted by ∅ = {}.

Georg Cantor is known as 

the founder of Set Theory. 

His doctoral thesis was 

titled, “In mathematics the 

art of asking questions 

is more valuable than 

solving problems” David 

Hilbert (1862−1943) 

said Cantor’s work was, 

“the nest product of 

mathematical genius 

and one of the supreme 

achievements of purely 

intellectual human 

activity.”
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Set builder notation is a mathematical notation used to describe  

sets, whether nite or innite. The following examples  

illustrate this: 

Set builder notation 

consists of three parts  

within curly brackets: a 

variable, a vertical line  

(or a colon) and any  

restrictions on the 

variable. 

A = {l, 3, 5, 7, 9} in set builder notation becomes

A = { | , , }x x n n n= − ∈ ≤
+2 1 5

B = {2, 4, 6, 8, ...} in set builder notation becomes

B = { | , }x x n n= ∈
+2 

You have been using a number of  innite sets in your mathematical  

journey so far. Here is a list of  them using the IB symbols for the sets:

The natural numbers    = { , , ,0 1 2 3  }

The integers     = ± ± ±{ , , , ,0 1 2 3 }

The positive integers   {1, 2, 3, }+

= 

The negative integers   { 1, 2, 3, }=    

The rational numbers   , , 0
p

q
p q q

⎧ ⎫
⎨ ⎬
⎩ ⎭

= ∈ ≠ 

The positive rational numbers  ,

p

q
p q

++ ⎧ ⎫
⎨ ⎬
⎩ ⎭

∈= 

Note that Q+ can also be 

described as

+ −
⎧ ⎫
⎨ ⎬
⎩ ⎭

∈=
p

q
p q 

The real numbers, denoted by R, are often represented by a number line.

2√ 0

The positive real numbers   
+

= ∈ >{ | , }x x x 0

The complex numbers    = + ∈ = −{ }a ib a b i| , , 1

Well-dened sets, equal sets and set dierence 

Denition

A set S is said to be well-dened if  for any given x, we can 

determine if  x belongs to the set.

For example, { }= ∈ <+| , 50, is a prime numberP n n n n  is a  

well-dened set because given any number +

∈n   we can determine  

whether n P n P∈ ∉or .

So for the set , 5 , 1 , 59 .P P P P∈ ∉ ∉  Although 59 is a prime number  

it is greater than 50 and therefore not in P
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The set T = {x|x ∈Z+, x is a prime number} is well-dened even  

though it is innite, because we know that any positive integer is  

either prime or non-prime.

The set L = {numbers which are lucky} is not well-dened because  

we do not know which numbers are lucky and which are not.  

The denition of  a lucky number depends on the context.

Given two sets A and B, if  every element in B is also an element  

of  A, we say that B is a subset of  A and denote this by B ⊆ A.  

If  all the elements of  B are in A and there is at least one element  

in A which is not in B then we say that B is a proper subset of  A,

denoted by B ⊂ A

Denitions

If  x B x A∈ ⇒ ∈  for all x ∈ B, then B ⊆ A

If  x B x A∈ ⇒ ∈  for all x ∈ B, and there is y ∈ A

such that y ∉ B, then B ⊂ A.

Axiom

If  a set B is a subset of  A, and A is also a subset of  B, then it 

follows that the two sets are equal. The converse of  this is also 

true, i.e. if  A and B are equal sets then A is a subset of  B, and  

B is a subset of  A.

Using set notation:  B ⊆ A and A B A B⊆ ⇔ =
⇔ is the notation used 

for “if and only if”. 

Whenever we need 

to prove a statement 

containing ⇔ we need 

to prove both ways, 

i.e. ⇒ and ⇐

The empty set ∅ is a subset of  any given set. We say that ∅ is a  

trivial subset. Another trivial subset of  any given set is the set  

itself.
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Denitions

A set containing all the elements under discussion is called the 

universal set and is denoted by U. 

If  set S ⊆ U, then the complement of S, denoted by S′, consists of   

all those elements that are in U but not in S,

  i.e. ′ = ∈ ∉{ | }S x U x S

The intersection of two sets A and B, denoted by A ∩ B, is made  

up of  those elements which are in both A and in B,

  i.e. ∩ = ∈ ∈{ | and }A B x x A x B

Since for all x A B x A∈ ∩ ∈,  it follows that A B A∩ ⊆

Similarly A B B∩ ⊆

 The union of two sets A and B, denoted by A ∪ B, is made up of  

those elements which are either in A, in B, or in both A and B,

    i.e. ∪ = ∈ ∈{ | or }A B x x A x B

If  A ∩ B = ∅ then A and B are said to be disjoint sets

The set consisting of  those elements that are in set A but not in  

set B is called the set dierence B from A denoted by A \ B,

    i.e. = ∈ ∉\ { | and }A B x x A x B

In Example 4 you will nd the proof  that A B A B\ = ∩ ′

The symmetric dierence of  two sets A and B is denoted by A Δ B

and consists of  those elements which are either in A, in B, but not 

in both A and B,

i.e. Δ = ∈ ∈ ∉ ∩ = ∪{ | or , } ( \ ) ( \ )A B x x A x B x A B A B B A

The following example demonstrates the application of  set operations  

on two nite sets.
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Example 

Consider the sets { }= ∈ ≤| , 65U n n n , A = {2, 4, 6, 8, 0, 2, 4, 6},

and B = {2, 4, 8, 6, 32, 64}.

Find:

a A ∪ B

b A ∩ B

c A \ B

d A Δ B

e (A ∪ B )\(A ∩ B )

Comment upon your results.

a A ∪ B = {2, 4, 6, 8, 0, 2, 4, 6, 32, 64}

b A ∩ B = {2, 4, 8, 6}

c A \ B = {6, 0, 2, 4}

d A Δ B = {6, 0, 2, 4, 32, 64}

e  (A ∪ B ) \ (A ∩ B ) = {6, 0, 2, 4, 32, 64}

  From the results of parts d and e, we see that:

A Δ B = (A ∪ B ) \ (A ∩ B ) 

List all elements that are in A or in B.

List the elements that are in both A and B.

List the elements which are in A but not in B.

List the elements that are in A or B, but not in 

both A and B.

List the elements that are in A ∪ B but not in 

A ∩ B.

In the next example the sets are described using set builder notation.

Example 

A = 
+

∈ <{ | , 10}x x x , B = { }∈ ≤| ,| | 5 ,y y y C = ∈ ≤| , 15z z z

List the elements in the following sets:

a A ∩ B

b A ∪ C

c C \ B

d A Δ B

A = {, 2, 3, 4, 5, 6, 7, 8, 9} 

B = {−5, −4, −3, −2, −, 0, , 2, 3, 4, 5} 

C = {0, , 2, 3, 4, . . . , 5}

a A ∩ B = {, 2, 3, 4, 5}

b A ∪ C = {0, , 2, 3, ..., 5} = C

c C \ B = {6, 7, 8, ..., 5}

d A Δ B = {−5, −4, −3, −2, −, 0, 6, 7, 8, 9}

List the elements of  the given sets.

Since all the elements of  A are in C this means 

that A ⊂ C.
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The next example deals with subsets of  a nite set.

Example 

Given that S = }{ +
, list all the proper subsets of  S

S = {l, 3, 5, 7} 

The proper subsets of  S are: 

{}, {3}, {5}, {7},

{, 3}, {, 5}, {, 7}, {3, 5}, {3, 7}, {5, 7},

{l, 3, 5}, {, 3, 7}, {, 5, 7}, {3, 5, 7}

List all the elements of  S.

List all the proper subsets of  S. Note that 

the empty set and {1, 3, 5, 7} are not

proper subsets of  S.

Investigation

The power set, P(S ), of  a nite set S with n elements is the set  

of  all subsets of  S including the empty set ∅ and S itself.

a Find the number of  sets in the power set of  S when n(S ) = 0 to 4.

b  Make a conjecture about the number of  sets in the power set of  S

c Check that your conjecture works for n(S ) = 5.

One method to show that two sets A and B are equal is called the  

containment method, or the double inclusion method.

To show that two sets A and B are equal we need to show both  

containment conditions, i.e. A ⊆ B and B ⊆ A

The following example illustrates how to use the double inclusion  

method to show that two statements are equal.

Example 

Show that A \ B = A ∩ B ′

Let x ∈A \ B

⇒ x ∈A and x ∉B

⇒ x ∈A and x ∈B ′

⇒ x ∈A ∩ B ′

Therefore A \ B ⊆ A ∩ B ′

Let x ∈A ∩ B ′

⇒ x ∈A and x ∈B ′

⇒ x ∈A and x ∉B

⇒ x ∈A \ B

⇒ A ∩ B ′ ⊆ A \ B

Since A \ B ⊆ A ∩ B ′ and A ∩ B ′ ⊆ A \ B,

it follows that A \ B = A ∩ B ′

Use the double inclusion method.

Working from left to right.

Denition of  set dierence.

Denition of  complement.

Denition of  intersection.

Working from right to left.

Denition of  intersection.

Denition of  complement.

Denition of  set dierence.



The development of Set Theory10

Example 5 illustrates how to use the double inclusion method  

to show that two sets are equal.

Example 

A = {n|n = 5k + 2, k ∈Z} and B = {n|n = 5k − 3, k ∈Z}

Show that A = B

Let x ∈A

⇒ x = 5m + 2, m ∈Z

Let m = k − 1.

Then x = 5(k − 1) + 2 = 5k − 3.

Therefore A ⊆ B

Let x ∈B

⇒ x = 5m − 3, m ∈Z

Let m = k + 1.

Then x = 5(k + 1) − 3 = 5k + 2.

Therefore B ⊆ A

Since A ⊆ B and B ⊆ A it follows that A = B.

Use the double inclusion method.

Since m is an integer, k is also an integer.

Since m is an integer, k is also an integer.

Example 6 proves the conjecture suggested by the investigation on page 9.

Example 

Prove that the power set of  a nite set S with n elements has exactly 2n elements.

Method I

By denition, the power set of  S is the set of  all 

subsets of  S including the empty set and S itself.

We can count these subsets as follows: The number 

of  subsets containing no elements is given by 
n

0

⎛

⎝
⎜

The number of  subsets containing only one element 

is given by 
n

1

⎛

⎝
⎜

The number of  subsets containing only 2 elements 

is given by 
n

2

⎛

⎝
⎜ , etc.

The total number of  subsets is therefore given by:

n n n n

n

n

0 1 2
2

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟ + +

⎛

⎝
⎜

⎞

⎠
⎟ =…

Use the binomial expansion of   

(1 + x ) n with x = 1.
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Method II

Let P(S
n
) denote the power set of  a set S with n

elements and let |P(S
n
)| denote the order of  P(S

n
), 

i.e. the number of  elements in the power set.

Proof  by induction: 

P
n
:|P(S

n
)| = 2n

When n = 0, S
0
 = ∅ which has only one subset.

⇒ LHS = |P(S
0
)| = 1

RHS = 20 = 1 

So P
0
 is true.

Assume that P
k
 is true for some k ≥ 0, since we have 

started with 0, i.e. |P(S
k
)| = 2k. When we add 

another element to S, n = k + 1. Then S
k+1

 consists 

of  all those subsets that do not contain the new 

element, i.e. 2k subsets, and all those other subsets 

which contain it, i.e. another 2k possible subsets. 

This gives us a total of  2 × 2k = 2k+1 subsets.

Since we proved that P
0
 is true and we showed that 

if  P
k
 is true P

k+1
 is also true it follows by the 

principle of  mathematical induction that 

P
n
:|P(S

n
)|=2nforalln ≥0.

Write down the statement.

Prove that the statement is true for n = 0.

Assume that statement is true for n = k. 

Show using assumption that the 

statement is true for n = k + 1. 

Write nal statement.

Russell’s Paradox: The 

development of set theory in 

the early 20th century was plagued 

by some thorny questions, the 

most famous of these posed by 

the eminent philosopher Bertrand 

Russell, and known as Russell’s 

Paradox. The problem he posed 

was to nd the set of all sets that 

do not contain themselves as 

members. The reason it is a 

paradox is easy to see in the 

well-known Barber’s paradox, which 

poses the question: "Suppose 

there is one barber in town and he 

shaves all the men in town, except for those who shave themselves. Who shaves the barber?”

If he shaves himself, then he contradicts his job description. If he doesn’t shave himself, he goes against 

his mandate to shave all those men who do not shave themselves. This paradox arises because Russell 

tries to nd the set containing all sets. Such paradoxes led to a formal axiomatic system of sets.
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Exercise 1A

1 Given that A = {a, b, c, d, e}, B = {a, e, i, o, u} and  

C = {b, c, d, f, g}, list the elements of  the following:

 a A \ B b B \ A c A Δ B

d (A ∩ B ) \ (A ∩ C ) e A ∩ (B ∪ C ).

2 Use the double inclusion method to prove that:

a A ∪ B = B ∪ A b A ∩ B = B ∩ A.

3 Prove that for three non-empty sets A, B and C

(C \ A ) ∩ (C \ B ) = C \ (A ∪ B ).

4 Given that A ⊂ B and B ⊂ C, prove that A ⊂ C. 

5 Prove that (A ∪ B )\(A ∩ B ) = A Δ B

1.2 Partitions and Venn diagrams

The picture on the left above shows a collection of  seashells. On the right,  

the seashells have been organized by type. All the seashells from the  

left-hand picture are in the right-hand picture but each seashell belongs  

to only one subset determined by its type. The seashells have been  

partitioned into sets which are disjoint but together make up the whole set.

Denition  

Let A be a non-empty set.

A partition of  a set A is another set P made up of  non-empty 

subsets of  A which are disjoint and whose union makes up the 

whole set.

i.e. P A A A A Ai i i j= = ∅⊆ ∩{ | , ,if   is not equal to  i j

⊃

A A
i
= }

⊃

A
i
 = A

means the union 

of all A
i

For example, one partition of  {l, 2, 3} would be P = {{l}, {2, 3}}.  

Another partition would be P = {{l, 2}, {3}}. 

In fact there are only ve partitions of  the set {l, 2, 3}, the other  

partitions being {{l, 3}, {2}}, {{l}, {2}, {3}} and {{,2,3}}.
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If  A = {all the countries of  the world}, one partition would be  

P = {all the continents} provided we assume that each country  

belongs to only one continent. 

Example 

Let W = {all the countries of  the world}.  

Determine which of  the following subsets of  W form a partition:
a A = {countries in Africa}

B = {countries in N and S America} 

C = {countries in Europe}

D = {countries in Asia}

E = {countries in Australasia}

b A = {any country whose name begins with a 

vowel}

B = {any country whose name contains the 

letter “a”} 

C = {any country whose name starts with a 

consonant}

a The given sets form a partition of  W.

b The given sets do not form a partition. 

Armenia, for example, is in both set A

and set B.

The sets represent all the continents and each 

country belongs to one continent only.

The sets in a partition must be disjoint.

Example 

Let S = {all subjects that can be chosen for an Extended Essay}.

Consider the sets A = {all subjects in group } D = {all subjects in group 4}

B = {all subjects in group 2} E = {all subjects in group 5}

C = {all subjects in group 3} F = {all subjects in group 6} 

Determine whether the sets A to F partition the set S

The given sets do not partition S because the 

subject Environmental Systems and Societies 

falls into group 3 and group 4.

The sets in a partition must be disjoint.

Exercise 1B

1 A deck of  playing cards contain 52 cards. These are divided into  

two red suits (hearts and diamonds) and two black suits (spades  

and clubs). Each suit contains 13 cards representing the numbers  

1 to 10 plus three picture cards (Jack, Queen and King). The picture  

on the next page shows a deck of  cards partitioned into 4 suits.

List a further two ways in which you could partition a deck of  cards.
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2 Let S = {l, 2, 3, . . . , 9}. Determine whether each of  the following is  

a partition of  S

a P = {{1, 2, 3, 9}, {4, 5, 6}, {7, 8}}

b = ∈ ∈{ | , is even}, { | , is a multiple of 3}, {1, 5, 7}{ }Q x x S x y y S y

c = ∈{{ | , is a prime number}, {1, 2, 4, 6, 8, 9}}B x x S x

3 Which of  the following collections of  subsets are partitions of  Z?

a = ∈ = + ∈ { | 2 , }, { | 2 1, }x x n n x x n n

b }= ∈ = + ∈ = + ∈ = + ∈   { | 4 , }, { | 4 1, }, { | 4 2, }, { | 4 3, }x x n n x x n n x x n n x x n n

c ∈ < − ∈ ≤ ∈ >  { | , 50}, { | ,| | 50}, { | , 50}x x x x x x x x x

4 Give examples with the given properties of  a partition P on the set R

a P divides R into a nite and an innite set.

b P divides R into two innite sets.

c P divides R into an innite number of  sets. 

1.3 Venn diagrams and set properties

Venn diagrams are named after the logician and philosopher John Venn. 

It may well be that these types of diagram were used earlier than his 

time. In fact Venn diagrams are very similar to Euler diagrams which were 

rst used by Leonhard Euler a century earlier.

Venn diagram stained 

glass window from 

Gonville and Caius 

College, Cambridge.
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Venn diagrams are very useful for showing relationships between  

dierent sets. A Venn diagram consists of  a rectangle representing  

the universal set U, and circles inside the rectangle to represent the  

sets under consideration. The following Venn diagrams represent the  

operations and relationships described above them. You should  

remember that a correct Venn diagram provides an illustration of  a  

statement but does not constitute a formal proof.

A ′ is the complement of A A∪ B

A

U

A'

A B

U

Disjoint sets have no intersection

A ∩ B A∩ B = ∅

A B

U U

The dierence of sets A\ B The symmetric dierence A Δ B

A B A B

As previously seen, one way of  showing that two sets are equal is by  

the containment or double inclusion method. Example 9 involves  

using the double inclusion method, which means establishing that  

if  x is an element of  the set on the LHS, then it is also an element of   

the set on the RHS, and vice versa.

Before you start with the formal proof  it is useful to draw a Venn diagram.  

This will help you visualize what you are aiming to prove.
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Example 

Show that ( )A B A B∩ ′ = ′ ∪ ′

( )A B∩ ′

A B

U

′ ∪ ′A B

A B

U

Draw Venn diagrams of  both the left hand side 

and right hand side of  the equation to help 

illustrate what you are asked to prove.

Let x A B∈ ∩ ′( )

⇒ ∉ ∩x A B

⇒ ∉ andx A B

orx A x B′ ′⇒ ∈ ∈

⇒ ∈ ′ ∪ ′x A B

Therefore ( )A B A B∩ ′ ⊆ ′ ∪ ′

Let x A B∈ ′ ∪ ′

orx A x B′ ′⇒ ∈ ∈

⇒ ∉ andx A B

⇒ ∉ ∩x A B

⇒ ∈ ∩ ′x A B( )

Therefore A B A B′ ∪ ′ ⊆ ∩ ′( )

Thus we conclude that ′ ∪ ′ = ∩ ′A B A B( )

Show both containment conditions.  

Start by showing that ( )A B A B∩ ∪′ ⊆ ′ ′.  

Since A ∩ B is made up of  elements that  

are in both A and in B it follows that an 

element which is not in this set is either not in 

A or not in B or not in both.

Now we must show that A' ∪ B' ⊆ (A ∩ B)'.

Since x is missing from A or B or both it cannot 

be in the intersection.

(A ∩ B)′ = A′ ∪ B′ is one of De Morgan’s Laws. The other one of De Morgan’s 

laws states that (A ∪ B)′ = A′ ∩ B′. The proof is left as an exercise.

Set properties

Before we move on, we need to prove some properties of  sets that will  

be used in the rest of  the book. The following theorem concerns  

properties that may seem trivial. These basic properties will be required  

for proofs of  less obvious results.
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Theorem 1

For any non-empty set A ⊆ U the following statements hold:

i A ∩ A = A ii A ∩ ∅ = ∅

iii A ∪ A′ = U iv A ∩ A′ = ∅

v A ∪ A = A vi A ∪ U = U

vii A ∩ U = A viii A ∪ ∅ = A

Proofs:

i For all x in A x A⇔ ∈  and x A∈ , it follows that A A A∩ =

ii By the denition of  intersection we know that A B B∩ ⊆ .  

 If  we let B = ∅ then this becomes A ∩ ∅ ⊆ ∅.  

But by denition ∅ ⊆ ∩ ∅A , since the empty set is a trivial subset of  any set. 

It therefore follows that A ∩ ∅ = ∅ (double inclusion).

iii x A A∈ ∪ ′

⇒ ∈ ∪x A U A( \ ), by denition of  complement 

⇒ ∈x Aor x U A∈ \ , by denition of  union

⇒ ∈x U, by denion of  the universal set 

′ ⊆A A U

 By denition of  the universal set 

x U x A∈ ⇒ ∈  or x A∉

⇒ ∈x A or x A∈ ′, by denition of  complement

⇒ ∈ ∪ ′x A A , by denition of  union

′U A A

 Since A A U∪ ′ ⊆  and U A A⊆ ∪ ′ it follows that A A U  =

The proofs of  the last ve properties are left as exercises.

You proved the next theorem in question 2 of  Exercise 1A.

Theorem 2: Commutative property

For any two sets A and B the following statements are true: 

i A B B A∪ = ∪ ii A B B A∩ = ∩

We shall now look at a very important property of  sets, namely the  

associative property for intersection and union. Again this property is very  

useful when proving other relations between sets.

Theorem 3: Associative property

For any three non-empty sets A, B and C, the following  

statements are true:

i A B C A B C∩ ∩ = ∩ ∩( ) ( )

ii A B C A B C∪ ∪ = ∪ ∪( ) ( )
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Proof of i: This proof  is carried out using double inclusion.

i LHS:

x A B C∈ ∩ ∩( )

⇒ ∈ ∈ ∩and ( )x A x B C , by denition of  intersection

⇒ ∈ ∈ ∈and andx A x B x C , by denion of  intersection

⇒ ∈ ∈ ∈( and ) andx A x B x C

⇒ ∈ ∩ ∈andx A B x C

⇒ ∈ ∩ ∩x A B C( )

A B C A B C( ) ( )

 RHS:

x A B C∈ ∩ ∩( )

⇒ ∈ ∩ ∈x A B x C( ) and , by denition of  intersection

⇒ ∈ ∈ ∈x A x B x Cand and , by denition of  intersection

⇒ ∈ ∈ ∈and ( and )x A x B x C

⇒ ∈ ∈ ∩x A x B Cand ( )

⇒ ∈ ∩ ∩x A B C( )

( ) ( )A B C A B C

Since  A B C A B C∩ ∩ ⊆ ∩ ∩( ) ( )  and  

∩ ∩ ⊆ ∩ ∩( ) ( )A B C A B C ,

it follows that A B C A B C∩ ∩ = ∩ ∩( ) ( )

The proof  of ii is left as an exercise.

Another useful property when establishing further  

relations between sets is the distribution of   

intersection over union and vice versa. Proof  of   

the distributive law is found in the next theorem.

Theorem 4: Distributive property

For any three non-empty sets A, B and C the 

following statements are true:

i A B C A B A C∩ ∪ = ∩ ∪ ∩( ) ( ) ( )

Intersection is distributive over union.

ii A B C A B A C∪ ∩ = ∪ ∩ ∪( ) ( ) ( )

Union is distributive over intersection.

Proof: (Once more we shall use the double inclusion  

method for part i. Part ii is included in the next exercise.)

i For all x A B C∈ ∩ ∪( )

⇒ ∈ ∈ ∪andx A x B C     Denition of  intersection

⇒ ∈ ∈ ∈and ( or )x A x B x C    Denition of  union 

⇒ ∈ ∈ ∈ ∈( and ) or ( and )x A x B x A x C   Rearranging within context

There are similarities between these 

properties and the associative and 

distributive properties of addition and 

multiplication of real numbers.  

For all a, b, c ∈ : 

a + b = b + a

ab = ba

+ ( + ) = ( + b)a b c a + c

( ) = ( )a bc ab c

( + ) = +a b c ab bc

With set operations, both intersection and 

union behave like addition and multiplication. 

For this reason we have two distributive 

properties, one for union over intersection 

and one for intersection over union. This 

is important for the study of algebraic 

structures where the focus is on the 

similarities (and differences) of properties of 

different operations acting on different sets.
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⇒ ∈ ∩ ∈ ∩x A B x A Cor

⇒ ∈ ∩ ∪ ∩x A B A C( ) ( )

 Therefore A B C A B A C∩ ∪ ⊆ ∩ ∪ ∩( ) ( ) ( )

 For all x A B A C∈ ∩ ∪ ∩( ) ( ),

x A B x A C∈ ∩ ∈ ∩or .   Denition of  union

⇒ ∈ ∈( and ) or ( and )x A B x A C   Deniton of  intersection 

⇒ ∈ ∈ ∈and ( or )x A x B x C

⇒ ∈ ∈ ∪andx A x B C

⇒ ∈ ∩ ∪x A B C( )

 Therefore (A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C)

  Hence by the double inclusion principle  

A B C A B A C∩ ∪ = ∩ ∪ ∩( ) ( ) ( ). 

Sometimes it is easier to prove a statement by using set properties  

than by using the double inclusion method. The previous theorems  

are essential when proving complex results, especially when the  

double inclusion method becomes too cumbersome. This is  

illustrated in the next example.

Example 

Given two non-empty sets A and B, show that: 

a A A B∩ ∪ ′ = ∅( )

b ( \ ) ( \ ) ( ) ( )A B B A A B A B∪ = ∪ ∩ ∩ ′

a ( ) ( )A A B A A B∩ ∪ ′ = ∩ ′ ∩ ′

= ∩ ′ ∩ ′( )A A B

= ∅ ∩ ′B

= ∅

b RHS

 = ( ) ( ) ( ) ( )A B A B A B A B∪ ∩ ∩ ′ = ∪ ∩ ′∪ ′

= ∪ ∩ ′[ ] ∪ ∪ ∩ ′[ ]( ) ( )A B A A B B

= [(A ∩ A′) ∪ (B ∩ A′)] ∪ [(A ∩ B′) ∪ (B ∩ B′)]

= [∅ ∪ (B ∩ A′)] ∪ [(A ∩ B′) ∪ ∅]

= (B ∩ A′) ∪ (A ∩ B′)

= ∩ ′ ∪ ∩ ′( ) ( )A B B A

= (A \ B) ∪ (B \ A)

= LHS

De Morgan’s Law

Associative property.

With the addition of  the proposed 

statements in Theorem 1, we can state 

that: A ∩ A' = ∅

De Morgan’s Law.

Distributive property.

Distributive property.

Denition of  intersection.

Denition of  union.

Commutative property.

Alternative form of  symmetric 

dierence.

There are different set 

theories. The one we cover 

in the HL syllabus is Naive Set 

Theory. This set theory is dened 

informally using natural language 

and properties of Boolean 

Algebra rather than the formal 

axioms of Symbolic Logic
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Here is a list of  rules you should remember because you will need 

to use them for proving more complex properties:

● A A U∪ ′ =

A A∩ ′ = ∅

A ∪ A = A

A ∩ A = A 

● A A B A∪ ∩ =( )

A A B A∩ ∪ =( )

● ( )A A′ ′ =

● ′ =U

U ′ = 

● A ∪ ∅ = A 

A ∩ U = A

● A ∩ ∅ = ∅ 

A ∪ U = U

● Commutative Laws A B B A

A B B A

∪ = ∪

∩ = ∩

● Distributive Laws ( ) ( ) ( )

( ) ( ) ( )

A B C A B A C

A B C A B A C

∩ ∪ = ∩ ∪ ∩

∪ ∩ = ∪ ∩ ∪

● Associative Laws A B C A B C

A B C A B C

∪ ∪ = ∪ ∪

∩ ∩ = ∩ ∩

( ) ( )

( ) ( )

● De Morgan’s Laws ( )

( )

A B A B

A B A B

∪ ′ = ′ ∩ ′

∩ ′ = ′ ∪ ′

Exercise 1C

1 Prove that:

 a ∪ ∩ ⊆ ∪ ∩( ) ( )A B C A B C

 b ∩ ∪ ⊆ ∩ ∪( ) ( )A B C A B C

(You may rst want to draw Venn diagrams to help visualize what you are  

trying to prove.)

2  Prove that ( )A B A B∪ ′ = ′ ∩ ′.  

(Hint: Use the double inclusion method used in Example 4.)

3 Prove that for all sets A, B and C :

A B C A B A C∪ ∩ = ∪ ∩ ∪( ) ( ) ( )

4 Given that A and B are subsets of  a universal set U,  

use De Morgan’s laws to prove that:

 a ( )A B A B′ ∪ ′ = ∩ ′ b ( )A B B U∩ ′ ∪ =

 c ( )A B B∪ ′ ∩ = ∅

This is the second 

part of the distributive 

law, i.e. union is 

distributive over 

intersection.
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5 Use the double inclusion method shown in Example 4 to prove that

Δ = ∪( \ ) ( \ )A B A B B A

6 a Use a Venn diagram to illustrate that Δ =  Δ A B A B

 b  Prove this result using the double inclusion method and the  

result of  question 5.

7 Prove that (( ) ( )) ( ) ( ) ( )A C B C A C B C A B′∩ ∪ ∩ ′ = ′ ∩ ∪ ′ ∩ ′ ∪ ′ ∩ ′

8 Use mathematical induction to prove De Morgan’s laws for n sets, i.e.

 a 1 2 3 1 2 3( )
n n

A A A A A A A A′ ′ ′ ′∪ ∪ ∪ ′ = ∩ ∩ ∩… …

 b 1 2 3 1 2 3( )
n n

A A A A A A A A′ ′ ′ ′∩ ∩ … ∩ ′ = ∪ ∪ …∪

1.4 The Cartesian product of two sets

In mathematics, a Cartesian product is a method which allows us to  

construct a new set of  multiple dimensions by combining multiple sets.  

For example if  we take the Cartesian product of  the sets R × R × R

we obtain a three-dimensional set we are familiar with, namely the  

three-dimensional set of  ordered triplets which was used when studying  

vectors in three dimensions. In general, if  we take the Cartesian product  

of  n sets, we obtain a representation of  an n-dimensional space. 

René Descartes rst came up with this concept when he formulated  

analytic geometry by using a “Cartesian plane”.

It was thanks to a common housey that the “Cartesian plane” came about. René 

Descartes, a French philosopher and mathematician, was in bed and noticed a y 

on the ceiling of his bedroom. He wondered whether he would be able to describe the 

exact position of the y to someone not in the room. Looking at a corner in the ceiling 

he saw three lines and three planes which intersected at the corner. He imagined 

dividing the lines into equal segments, calling the corner the ‘origin’ and giving it the 

value (0,0,0) and numbering the segments along each line 1, 2, 3 ... 

The position of the y in the room could then be described by three numbers. 

Descartes had created a system to describe 3D space. If he used only one plane, 

the ceiling, and two perpendicular lines, then the position of the y on the ceiling 

would be described by just two numbers. This was the birth of the 3D Cartesian 

coordinate system as well as the Cartesian plane in 2D.

The following two examples illustrate how new sets are constructed  

using the Cartesian product.

If  Fabienne has three blouses: plain, owered and striped, and four pairs of   

jeans: blue, red, white and green, then the total number of  ways of  combining  

these would be the Cartesian product of  the sets {blouses} and { jeans}.

B = {blouses} = { p, f, s}

J = {jeans} = {b, r, w, g}

B × J = {( p, b), ( p, r), ( p, w), (p, g), ( f, b), ( f, r), ( f, w), (f, g), (s, b), (s, r), (s, w), (s, g)}



The development of Set Theory22

Note that in the set denoting the Cartesian product B × J, each pair  

is ordered so that the rst item is a blouse and the second is a pair  

of  jeans.

Another example of  the Cartesian product would be coordinates  

used to locate positions on a globe, i.e. Latitude × Longitude.

Valletta, the capital city of  the island of  Malta, would be located at  

(35° 53′ 58″ N, 4° 30′ 52″ E).

Denition

The Cartesian product of  two non-empty sets A and B denoted by 

A × B is the set of all ordered pairs (a, b) where a ∈ A and b ∈ B

In set-builder notation, A × B = {(a, b) | a ∈ A, b ∈ B}

So if  A = {l, 3} and B = {2, 4, 6}, 

A × B = {(l, 2), (l, 4), (l, 6), (3, 2), (3, 4), (3, 6)}

B × A = {(2, ), (2, 3), (4, ), (4, 3), (6, ), (6, 3)}

Clearly you can see that A × B ≠ B × A.

With this denition it becomes evident that the Cartesian product R × R

represents the Euclidean plane, also referred to as the Cartesian plane. 

The Cartesian product Z × Z is made up of the points on this plane whose 

coordinates are integers. It is usual to denote the Cartesian product of a set A

with itself as A2  So R × R = R2 and Z × Z = Z2. Since the Cartesian product is 

a set, the number of ordered pairs in a Cartesian product is its cardinality. The 

three dimensional Cartesian coordinate system, also known as Euclidean space, 

is represented by R x R x R = R3. 

Example 

The Cartesian product of  two sets A and B consists of  six elements.  

Three of  these are (a, a), (b, b) and (c, a). Find the sets:

i A

ii B

iii A × B

i a, b, c ∈A

a, b ∈ B

A = {a, b, c}

ii B = {a, b}

iii A × B = {(a, a), (a, b), (b, a), (b, b), (c, a), (c, b)}

Since they are the rst elements in the 

three ordered pairs given.

They are the second elements in the 

ordered pairs.

Since n(A × B) = 6

Global Positioning 

Systems calculate our 

longitude and latitude in real 

time. Differential GPS is an 

enhancement of some GPS 

units that, in addition to orbiting 

satellites, uses ground stations 

on the Earth to calculate a 

position more accurate than 

satellite-only GPS. Differential 

GPS can improve the accuracy 

of readings from about 

50 feet to within 10 feet of the 

actual location.
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1.5 Relations

You should have noticed from the previous examples the following points:

 The Cartesian product of  two sets is a set.

 The elements of  the set are ordered pairs.

  In each ordered pair, the rst element comes from the rst set and the  

second element comes from the second set.

Now that you understand what a Cartesian product is we can move  

on to appreciate how this product allows us to construct other sets.

Denition

A relation, R, between two non-empty sets A and B is a subset of   

A × B and is usually governed by a rule connecting the ordered 

pair in the relation, commonly denoted by aRb.

For example if  = ={1, 2, 3, 4} and {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}A B  and  

we dene the relation aRb ⇔ b = a2, then R = {(, ), (2, 4), (3, 9)}. 

Actually a relation 

does not have to be 

governed by a rule. 

Any random subset 

of A × A is a relation 

on A whether or not it 

describes a rule.

Example 

Given a set A, prove that a relation R on A is a subset of  A × A

Let ( , )a b R∈

⇒ aRb

⇒ ∈ ∈anda A b A

⇒ ∈ ×( , )a b A A

Therefore R A A⊆ ×

Since R is a relation on A. 

Denition

Let R be a relation from set A to set B. The inverse of  relation R, 

denoted by R−, is the set of  ordered pairs {(b, a) | (a, b) ∈ R}.

Example 

Given that A = {, 2, 3, . . . ,0} and R ⊆ A × A such that aRb ⇒
b

a
 = 2, nd R−

R = {(, 2), (2, 4), (3, 6), (4, 8), (5, 0)}

⇒ R− = {(2, ), (4, 2), (6, 3), (8, 4), (0, 5)}

List all the elements of  R.

Use the denition of  R−1 to list its elements.

In other words, bR−a ⇔ aRb
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Exercise 1D

1 If  A = {1, 2, 3} and B = {p, q}, nd A × B and B × A.  

Are the two products equal?

2 A tetrahedral die A and a normal six-sided die B are tossed  

simultaneously, thus A = {1, 2, 3, 4} and B = {1, 2, 3, 4, 5, 6}.

a i List the elements of  the Cartesian product A × B

ii Show that A A A B× ⊂ ×

b Write down the sets that represent the following relations:

i If  a ∈A and b ∈ B, aRb ⇔ a + b is a prime number.

ii If  a ∈A and b ∈ B, aRb ⇔ b = a2

iii If  a ∈A and b ∈ B, aRb ⇔ b − a is a prime number.

iv If  a, b ∈A, aRb ⇔ a + b ∈ B

3 Given set A = {a, b} and set B = {p, q}, list all the elements of  A × B

and nd the number of  subsets in the power set of  A × B

4 Let A = {a, b}, B = {l, 2, 3} and C = {3, 4}. Find:

a ( ) ( )A B A C×  ×

b A B C× ( )

c What can you conclude from the answers to a and b?

5 Let A, B and C be three non-empty sets. Prove that if  A B⊂  then A C B C× ⊂ ×

6 Let S = {0, 2, 4, 6, 8}. Write out the elements of  set R which is a subset of S × S  

given by aRb ⇒ a ≤ b

7 Prove that for three non-empty sets A, B and C : ( ) ( ) ( )A B A C A B C× ∩ × = × ∩

8 Let A, B, C and D be four non-empty sets such that ⊆ ⊆andA C B D .  

Show that A B C D× ⊆ ×

9 For three non-empty sets A, B and C show that A × (B \ C ) = (A × B )\ (A × C ).

10 Given that A = R+ and B = {x|x ∈Z+, x ≤ 10}, dene the relation R on A × B

as follows: aRb ⇒ a = 2b. List all the elements that make up the  

relation R. Find R−1. What is the cardinality of  R−1?
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Equivalence relations

Among all the relations that can be established in sets there is a special  

class, namely equivalence relations. 

As just discussed, a relation on a set A is a collection of  ordered  

pairs (a, b) which are governed by this relation. As such,  

a relation R on a set A is a subset of  A × A.  

For example, A = {a, b, c, d, e, f  },  

the sides of  a regular hexagon, and R
l
 is the relation dened by  

xR

y ⇔ ‘x is parallel to y’, where, x, y ∈A. 

a

b

c

d

e

f

Then we can say that segment a is parallel to itself  and also to d.  

Segment b is parallel to itself  and also to e, etc. 

Thus R

 = {(a, a), (a, d ), (b, b), (b, e), (c, c), (c, f  ), (d, d ), (d, a), (e, e), (e, b), ( f, f  ), ( f, c)}

which is a subset of  A × A

Note that in the hexagon example, for all elements a ∈A, we have the 

ordered pair (a, a) in R. Therefore we say that xR

x for all x ∈ A, i.e.  

the relation is reexive

Also in this example we notice that if  (x, y) is in R

 then ( y, x) is in R


,  

for example (a, d ) and (d, a).

i.e. xR

y ⇒ yR


x for all x, y ∈ A. The relation is said to be symmetric

Now consider a dierent example, the set of  all polygons P.  

Let R be the relation on P × P dened by xRy ⇒ ‘x and y are similar polygons’

R is reexive since any polygon is similar to itself.

R is symmetric since if  polygon x is similar to polygon y,  

then y is also similar to x

Now consider xRy ⇒ ‘x is similar to y’ and yRz ⇒ ‘y is similar to z’.  

Then by properties of  similarity it follows that x is similar to z.  

Since xRy and yRz ⇒ xRz we say that the relation R is transitive

Denition

A relation R dened on a set A is said to be an equivalence 

relation if  the following three conditions are true:

● R is reexive, i.e. aRa for all a ∈A

● R is symmetric, i.e. aRb ⇒ bRa for all a, b ∈ A

● R is transitive, i.e. aRb and bRc ⇒ aRc for all a, b, c ∈A

The diagram on the right illustrates an equivalence relation  

on the set S = {A, B, C, D}. The arrows indicate the relation  

between individual elements of  S, which are represented  

by the vertices. Note that although C is related only to itself,  

the relation is still symmetric and transitive. 

A

D

C

B

In simple cases like the next example, it may be useful to draw  

a similar diagram.
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Example 14

Let A = {l, 2, 3, 4} and R A A⊆ ×  such that

R = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 4)}.

Is R an equivalence relation?

For all a ∈ A, aRa

R is reexive

For all a, b ∈ A, if  aRb then bRa

R is symmetric

Also for

a, b, c ∈ A, aRb and bRc ⇒ aRc

R is transitive

Thus, R is an equivalence relation.

We see that

1R1, 2R2, 3R3 and 4R4

We can see that

1R2 and 2R1, 1R3 and 3R1, 2R3 and 3R2

We see that

1R2 and 2R3 and 1R3

1R3 and 3R2 and 1R2

2R3 and 3R1 and 2R1

2R1 and 1R3 and 2R3

3R2 and 2R1 and 3R1

3R1 and 1R2 and 3R2

Example 15

Let A = {l, 2, 3, 4} and R A A
i
⊆ ×

Construct the following relations:

a A relation R
1
 that is reexive and symmetric but not transitive.

b A relation R
2
 that is reexive and transitive but not symmetric.

c A relation R
3
 that is symmetric and transitive but not reexive.

The following working shows three examples to illustrate the relations. There are other 

examples that you might be able to come up with.

a R
1
 = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (2, 3), (3, 2)}

 Reexive because

 1R1, 2R2, 3R3 and 4R4.

 Symmetric because

 1R2 and 2R1 and 2R3 and 3R2.

 Not transitive because

 1R2 and 2R3 but 1 R 3.

b R
2
 = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2)}

 Reexive because

 1R1, 2R2, 3R3 and 4R4.

 Transitive because, for example

 1R1 and 1R2 and 1R2.

 Not symmetric because 1R2 but 2 R 1

a R b means that a is 

not related to b.
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c R = {(, ), (l, 2), (l, 3), (2, l), (2, 2), (2, 3), (3, l), (3, 2), (3, 3)}

 Symmetric because

 R2 and 2R, R3 and 3R, 2R3 and 3R2

 Transitive because

 R3 and 3R2 and R2

 R2 and 2R3 and R3

 2R and R3 and 2R3

 2R3 and 3R and 2R

 3R2 and 2R and 3R

 3R and R2 and 3R2

 Not reexive because 4R4

Example 

A = {3, 4, 5, 9, 0, , 3} and aRb ⇔ |a − b| is divisible by 5.  

Show that R is an equivalence relation.

R = { (3, 3), (4, 4), (5, 5), (9, 9), (0, 0), (, ), (3, 3),  

(3, 3), (4, 9), (5, 0), (3, 3), (9, 4), (0, 5)}

|a − a| = 0 = 0 × 5, for all a, therefore R is reexive

|a − b| = |b − a| ⇒ aRb ⇒ bRa, therefore R is symmetric

|a − b| is divisible by 5 ⇒ a − b = 5m, m ∈Z

|b − c| is divisible by 5 ⇒ b − c = 5n, n ∈Z

Combining these two we obtain

a − c = 5(m + n)

⇒ |a − c| = 5|m + n| ⇒ aRc. Therefore R is transitive

R satises all three conditions necessary to qualify as an equivalence relation.

Modular Congruence
The following is a common example of  equivalence relations. It generates  

all the Z sets that will later be used to dene groups of  every single order n

x, y ∈Z are said to be congruent modulo n if  |x − y|is divisible by n.

We denote this by x ≡ y (mod n).

Consider the following lists of  numbers from  to 60:

 2 3 4 5 6  2 3 4 5

7 8 9 0  2 6 7 8 9 0

3 4 5 6 7 8  2 3 4 5

9 20 2 22 23 24 6 7 8 9 20

25 26 27 28 29 30 2 22 23 24 25

3 32 33 34 35 36 26 27 28 29 30

37 38 39 40 4 42 3 32 33 34 35

43 44 45 46 47 48 36 37 38 39 40

49 50 5 52 53 54 4 42 43 44 45

55 56 57 58 59 60 46 47 48 49 50

5 52 53 54 55

56 57 58 59 60
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These tables are another way of  writing the congruences  

modulo 6 (≡ (mod 6)) and modulo 5 (≡ (mod 5)). Note that the rst  

column of  each table represents x ≡ (mod 6) and y ≡ (mod 5)  

respectively. Another way of  expressing these numbers would be to  

say that all the numbers in the rst column leave a remainder of   

 when divided by 6 and by 5 respectively. Similarly the second  

column of  each table represents the numbers that leave a remainder  

of  2, and so on. So each column would represent a relation on all  

the positive integers if  we were to continue building up the tables.

It is also easy to see from the tables that congruence modulo 6 and  

modulo 5 are equivalence relations.

Let’s look at the rst table only. Since each column represents x (mod 6)  

with x ∈{0, , 2, 3, 4, 5} with 0 representing 6 since 0(mod 6) represents  

all the multiples of  6, we see that x ≡ x (mod 6) since these are the  

numbers in the rst row. Any two numbers in the same column are  

congruent to each other modulo 6.  

For example, 28 ≡ 4 (mod 6) and 52 ≡ 4 (mod 6)

⇒ 28 ≡ 52 (mod6) and 52 ≡ 28 (mod6) i.e. symmetric.

We can do this for any pair of  numbers in the same column; this  

leads to the conclusion that the relation ‘congruence modulo 6’  

is symmetric.

Similarly if  we take any three numbers in a column, we realize that they  

are all related to each other. e.g. 
59 35 6

35 11 6
59 11 6

≡

≡

⎫
⎬
⎭
⇒ ≡

(mod )

(mod )
(mod )

Again we can do this for any three numbers in a particular column,  

thus we can deduce that congruence modulo 6 is a transitive relation  

on the positive integers.

We can now list the rst table as follows:

1(mod 6) 2(mod 6) 3(mod 6) 4(mod 6) 5(mod 6) 0(mod 6)

 2 3 4 5 6

7 8 9 0  2

3 4 5 6 7 8

9 20 2 22 23 24

25 26 27 28 29 30

3 32 33 34 35 36

37 38 39 40 4 42

43 44 45 46 47 48

49 50 5 52 53 54

55 56 57 58 59 60
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Each column represents the dierent congruences modulo 6 and the 

columns have divided the numbers into distinct, disjoint subsets 

(equivalence classes). Although the table represents only the integers 

1 to 60, it is clear that we could continue to build up the table endlessly. 

All the positive integers could be included in such an endless table, and 

they would all be separated into distinct equivalence classes representing 

the particular congruence.

We say that ≡ (mod 6) partitions the positive integers into  

six equivalence classes.

Repeat the process above with ≡ (mod 5) and show that this is an  

equivalence relation.

We are now in a position to explain the properties of  modular  

arithmetic in a more rigorous manner.

Denition

a is congruent to b modulo n if n divides (a − b),  

i.e. (a − b) = kn, k ∈Z

a ≡ b(mod n) ⇒ n|(a − b) ⇒ (a − b) = kn, k ∈Z

So, 14 ≡ 0(mod 7) since 7|l4. 

But 13 

34 ≡ 6(mod 7) since 7|(34 − 6).

Theorem 5

The relation R which is dened as : aRb ⇔ a ≡ b(mod n), n ∈Z+, is 

an equivalence relation on Z

Note that congruence 

(mod 0) does not exist 

since we cannot  

divide by 0.

Proof:

a ≡ a(mod n) since n|0 for all a ∈Z

Therefore R is reexive.

a ≡ b(mod n) ⇒ a − b = kn, k ∈Z

⇒ b − a = −kn, −k ∈ Z

⇒ n|b − a ⇒ b ≡ a (mod n) 

Therefore R is symmetric.
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a ≡ b(mod n) ⇒ a − b = pn, p ∈ Z

b ≡ c(mod n) ⇒ b − c = qn, q ∈ Z

Adding ⇒ a − c = n(p + q), p + q ∈ Z

 ⇒ a ≡ c (mod n)

Therefore R is transitive. Q.E.D.

Example 

For each given set S and associated relation R, determine whether or not

R is an equivalence relation.

a S is the set of  all people in Asia, 

aRb ⇔ a and b have the same parents.

b S is the set of  all people in Australia,  

aRb ⇔ a and b live within 100 km of  each other.

c S is the set of  straight lines in a plane, 

aRb ⇔ a is parallel to b

a It is clear that aRa ⇒ R is reexive.

aRb ⇒ bRa since both have the same parents. R is symmetric

aRb ⇒ a and b have the same parents.

bRc ⇒ b and c have the same parents.

 It follows that a, b and c have the same parents so

aRc and R is transitive.

R is an equivalence relation.

b Clearly aRa. R is reexive.

aRb ⇒ a and b live within 00 km of  each other ⇒ bRa. R is symmetric.

 Let b live 90 km due east of a and c 80 km due east of b

aRb and bRc but a is not related to c because

c lives 70 km due east of  a. R is not transitive.

 Therefore it is not an equivalence relation.

c By denition of  parallel lines in a plane aRa

 Similarly aRb ⇒ bRa. So R is symmetric.

aRb ⇒ a is parallel to b

bRc ⇒ b is parallel to c

 By denition of  parallel lines, aRc which means

R is transitive, so R is an equivalence relation.
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Example 

Let the relation R on N be dened as xRy ⇔ 2x − y = 5n, n ∈Z

Determine if  the relation is:

a reexive

b symmetric

c transitive

a When x = , 2 ×  −  ≠ 5n

 Therefore x Rx 

R is not reexive.

b Let xRy ⇒ 2x − y = 5n, n ∈Z

⇒ 2y − x = 4x − 0n − x = 3x −0n

⇒ 3x − 10n ≠ 5k, k ∈Z

 Therefore y Rx

R is not symmetric.

c 8R

 R2

 8R2

R is not transitive.

Proof  by counter-example

Substitute x = 1 into 2x − x.

(We could also have chosen any other 

non-zero natural number for x.)

Proof  by counter-example

Substitute y = 2x − 5n into 2y − x

Proof  by counter-example

16 − 11 = 5

22 − 2 = 5 × 4

16 − 2 = 14

and 14 is not a multiple of  5.

A counter-example is a valid method to show that a property does not hold; 

in fact it is the most common method to disprove “for all” statements.

Example 

Let S = {0, 2π} and the relation R = {(0, 0), (0, 2π), (2π, 0), (2π, 2π)}.

Determine if  R is an equivalence relation.

0 2π

R is reexive because 0R0 and 2πR2π

R is symmetric because 0R2π and 2πR0.

R is also transitive because:

0R2π, 2πR2π and 0R2π

0R2π, 2πR0 and 0R0 

R is an equivalence relation of  S.

Draw a diagram to illustrate the 

relation.

Note that when a relation includes all the elements of S × S the relation is 

an equivalence relation.
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Exercise 1E

In questions  to 5 determine whether or not the given relation is  

an equivalence relation on the dened set.

1 For a, b ∈Z, aRb ⇔ |a| = |b|.

2 For m, n ∈Z +, mRn ⇔ “m and n have the same number of  digits”.

3 For x, y ∈R, xRy ⇔|x − y| ≤ 3.

4 For x, y ∈R, xRy ⇔ x + y ∈Z

5 For p, q ∈Q, pRq ⇔ p − q ∈Z

6 Let S = { f
i
 (x)| f

i
 (x) = m

i
x + c

i
 , where m

i
, c

i
∈R}. The relation

R is dened on S such that f
i
(x)Rf

j
(x) ⇔ m

i
 = m

j

Show that R is an equivalence relation on S

7 Let S = { f
i
 (x)| f

i
 (x) = m

i
x + c

i
 , where, m

i
, c

i
∈R}. The relation

R is dened on S such that f
i
(x)Rf

j
(x) ⇔ m

i
m

j
 = −1.  

Show that R is symmetric but not reexive or transitive.

8 The relation R is dened on Z such that mRn ⇔ m2
≡ n2(mod 4). 

Show that R is an equivalence relation.

9 The relation R is dened on R × R such that  

(a, b)R(c, d ) ⇔ a2 + b2 = c2 − d 2. 

 Determine whether or not R is an equivalence relation.

10 Let = ∈ ≠
⎧ ⎫
⎨ ⎬
⎩ ⎭

: , .
p

q
S p q Z q, 0 The relation R is dened on S such that 

⇔

a c

b d

R ad bc= . Determine whether or not R is an equivalence relation.

1.6 Equivalence classes and partitions

Refer back to Example 4 where we had A = {l, 2, 3, 4} and

R ⊆ A × A such that R = {(, ), (, 2), (, 3), (2, ), (2, 2), (2, 3),  

(3, ), (3, 2), (3, 3), (4, 4)}.

We create the set of  those elements related to , i.e.{l, 2, 3}.

Similarly the set of  those elements related to 2, i.e. {l, 2, 3}.

And the set of  elements related to 3 would also be {l, 2, 3}.
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Then the set of  elements related to 4 is {4}.

We can also illustrate this by sketching a diagram.

1

2

3

4

Note that the equivalence relation R has separated A into two distinct  

subsets, {l, 2, 3} and {4}. We call these the equivalence classes of  the  

elements of A under the relation R. The relation has induced a partition 

of  the set A into two disjoint subsets.

This diagram shows the 

division of a set into 6 

partitions by a given relation

Now consider the relation x ≡ y (mod 6) on Z +. We saw on page 28  

that this relation distributes the positive integers into 6 distinct sets  

of  integers as follows:

[] = x ≡ l(mod6) ⇔ x ∈{l, 7, 3, 9, . . .}

[2] = x ≡ 2(mod6) ⇔ x ∈{2, 8, 4, 20, . . .}

[3] = x ≡ 3(mod6) ⇔ x ∈{3, 9, 5, 2, . . .} 

[4] = x ≡ 4(mod6) ⇔ x ∈{4, 0, 6, 22, . . .} 

[5] = x ≡ 5(mod6) ⇔ x ∈{5, , 7, 23, . . .}

[0] = x ≡ 0(mod6) ⇔ x ∈{6, 2, 8, 24, . . .}

Notice that the equivalence classes form a partition of  the set A

We say that congruence modulo 6 divides Z+ into 6 distinct  

sets denoted by Z
6
. The relation has broken up the innite set Z into  

a set of  six innite sets, each one called an equivalence class.  

These equivalence classes constitute a partition of  the original set.  

Hence we say that an equivalence relation induces a partition of  the set.

Denition

An equivalence class [x ] under an equivalence relation R on a set

A is the set of  all elements related to x in A,

i.e. [x] = {a|a ∈ A, aRx}.

In some text books 

equivalence classes 

are denoted by x or x ̇
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Let’s refer back to Example 6 where A = {3, 4, 5, 9, 0, , 3}  

and aRb ⇔|a − b| is divisible by 5.

R = {(3, 3), (4, 4), (5, 5), (9, 9), (0, 0), (, ), (3, 3), (3, 3),  

(4, 9), (5, 0), (3, 3), (9, 4), (0, 5)}

The equivalence classes induced by this relation are  

[3] = {3, 3}, [4] = {4, 9}, [5] = {5, 0} and [] = {} 

[3] is an equivalence 

class consisting of  

{3, 13} because 3R3 

and 3R13. No other 

element in A is related 

to 3.

Example 

Let S = {, 2, 3}.

The relation R = {(, ), (, 2), (2, ), (2, 2), (3, 3)}.Show that R is an  

equivalence relation and nd the partition of  the set S induced by R

It is easy to check that R is reexive, symmetric and 

transitive. So R is an equivalence relation on S

We can illustrate the relation on a diagram.

1

2

3

Under the relation R, [] = {, 2} and [2] = {, 2}  

and [3] = {3}.

Since [] = [2], {[], [3]} or {[2], [3]} are partitions of  S

A diagram helps us visualize 

the equivalence classes.

Example 

T = {triangles} and R is dened on T such that for a, b ∈T, aRb ⇔ a is similar to b. Determine 

whether R is an equivalence relation and explain the equivalence classes of T under R

Any triangle is similar to itself.

aRa ⇒ R is reexive

Triangles whose angle measures are the same 

are similar to each other.

aRb ⇒ bRa ⇒ R is symmetric 

Similar triangles are triangles of  the same shape.

⇒ ⎫
⎬

⇒ ⎭

is similar to
is similar to

is similar to

aRb a b
a c

bRc b c

aRc ⇒ R is transitive

Hence, R induces the partition of  T into those 

triangles which are similar to each other.

Check the properties for an equivalence relation.

Check the properties for an equivalence relation.

Check the properties for an equivalence relation.
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Note that in all the examples seen so far the equivalence classes  

formed by a particular relation are disjoint. In the following  

theorem we will prove that an equivalence relation generates a  

collection of  disjoint subsets whose union is the set itself.  

In other words, we will now formally prove that an equivalence  

relation R on a set A induces a partition of  A

Theorem 6

Equivalence classes formed by an equivalence relation on a set

A are disjoint, and their union is A

Proof:

First we need to prove that [x
i 
] are disjoint for dierent  

values of  i

Assume that two equivalence classes [x
i 
] and [x

j 
] are not disjoint.

Then there must be some a ∈A such that a ∈ [x
i 
] and a ∈ [x

j 
]. 

By denition of  equivalence classes this means that aRx where x ∈ [x
i
]  

and aRy where y ∈ [x
j 
].

Because of  the symmetric and transitive properties, this can be true  

only if  [x
i 
] ⊆ [x

j 
] and [x

j 
] ⊆ [x

i 
] ⇒ [x

i 
] = [x

j 
].

That is, if  aRx then xRa since R is symmetric, and xRa together with  

aRy implies that xRy because R is transitive. Hence [x
i
] = [x

j 
].

Therefore equivalence classes are disjoint.

Now we need to prove that the equivalence classes are exhaustive,  

i.e. all of  set A is partitioned by the set of  equivalence classes. 
The most trivial 

case of the partition 

would be when each 

equivalence class has 

only one element. 

Since R is an equivalence relation we know that it is reexive:

xRx for all x ∈ R

So at least one element x ∈ [x], which means that there is no  

element in A which does not belong to an equivalence class. 

This means that the equivalence classes [x
i 
] partition the set A

We say that an equivalence relation induces a partition of  a set. Q.E.D.

In the following example you will see how an equivalence relation  

on R2 divides the plane into equivalence classes that can be  

described geometrically.
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Example 

A relation R is dened on R × R as follows: (a, b) R (c, d ) ⇔ 2a − b = 2c − d

a Show that R is an equivalence relation.

b Find the equivalence classes and explain them geometrically.

a (a, b)R(a, b)

2a − b = 2a − b for all a, b ∈R

 Therefore R is reexive.

 (a, b)R(c, d ) ⇔ 2a − b = 2c − d

⇒ 2c − d = 2a − b

⇒ (c, d )R(a, b)

 Therefore R is symmetric.

 (a, b)R(c, d ) ⇔ 2a − b = 2c − d

 (c, d )R( p, q) ⇔ 2c − d = 2p − q

⇒ 2a − b = 2p − q

⇒ (a, b)R( p, q)

 Therefore R is transitive, hence R is an equivalence relation.

b Let (x, y) ∈[(a, b)]

 2x − y = k where k = 2a − b

⇒ y = 2x − k

 This represents the set of  lines parallel to y = 2x.

Show that the properties of  

equivalence relations are 

satised.

One of  these lines would be 

the line

y = 2x ⇒ (x, y) ∈[(1, 2)]

In the following example we will look at a relation that categorizes  

the integers into odd and even numbers.

Example 

The relation R is dened on Z such that aRb ⇒ a + b is even.

a Show that R is an equivalence relation.

b Find the partitions of  Z under R

a aRa

a + a = 2a ⇒ aRa ∈Z

 Therefore R is reexive.

aRb ⇒ a + b is even

⇒ b + a is even ⇒ bRa

 Therefore R is symmetric.

aRb ⇒ a + b = 2p

bRc ⇒ b + c = 2q

⇒ a + c = 2( p + q − b) ⇒ aRc

 Therefore R is transitive.

b Let x ∈[a]

⇒ xRa ⇒ x + a = 2n

  Therefore R partitions Z into two equivalence classes 

[] and [2] which represent the odd and even 

numbers respectively.

Show that the properties of  

equivalence relations are satised.

Addition is commutative in Z

p ∈ Z

q ∈ Z

If  a is odd then c must be odd and if  

a is even then c must also be even.

Under R

Z = { Z
1

∪ Z
2
} since

Z
1

= 1(mod 2) = {odd numbers}

Z
2

= 0(mod 2) = {even numbers}
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The next relation organizes ordered pairs of  integers along lines passing  

through the origin.

Example 

The relation R is dened on Z + × Z + such that (a, b)R(c, d ) ⇒ ad = cb.  

Show that this is an equivalence relation and give a geometric description  

of  the equivalence classes.

(a, b)R(a, b) 

ab = ab

Therefore R is reexive 

(a, b)R(c, d ) ⇒ ad = cb

⇒ cb = ad

⇒ (c, d )R(a, b)

Therefore R is symmetric

(a, b)R(c, d ) ⇒ ad = cb ⇒ adq = cbq

(c, d )R( p, q) ⇒ cq = dp ⇒ cqb = dpb

⇒ adq = cbq = dpb ⇒ aq = pb

⇒ (a, b)R( p, q)

Therefore the relation is transitive.

Let (x, y) ∈[(a, b)]

⇒ xb = ay

⇒ =

b

a
y x

The equivalence class [(a, b)] represents 

ordered pairs of  positive integers which lie 

on the straight lines passing through 

the origin with gradient 
b

a

Show that the properties of  an equivalence 

relation hold.

This is illustrated on the  

diagram below:

–4 –3 –2 –1

–4

–3

–2

–1

0

f

1

2

3

4

1 2 3 4 5 6
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Example 

The relation R is dened on S = {x|x ∈ Z+, x ≤ 5} by

aRb ⇔ a(a −) ≡ b(b − )(mod 7).

a Show that R is an equivalence relation.

b  Show that the equivalence R can be written in the form  

(a − b)(a + b − ) ≡ 0(mod 7).

c Hence, or otherwise, determine the equivalence classes.

a a(a − ) ≡ b(b − )(mod 7)  

⇒ a(a − ) −b(b − ) = 7n, n ∈ Z

 Reexive:

aRa ⇒ a(a − ) ≡ a(a − )(mod 7) 

a(a − ) − a(a − ) = 0n = 0

 Symmetric:

aRb ⇒ a(a − ) − b(b − ) = 7n

⇒ b(b − ) − a(a − ) = 7(−n) ⇒ bRa 

 Transitive:

aRb ⇒ a(a − ) − b(b − ) = 7n

bRc ⇒ b(b − ) − c(c − ) = 7m

⇒ a(a − ) − c(c − ) = 7(n + m)

⇒ aRc

b a(a − ) − b(b − ) = 7n

⇒ a2 − a − b2 + b = 7n

⇒ (a − b)(a + b − ) = 7n ≡ 0(mod 7)

c ⇒ (a − b)(a + b − ) = 7n

a − b = 7n or a + b −  = 7n, n ∈Z

Therefore the equivalence classes are: 

  [l]  = {l, 7, 8, 4, 5}

 [2] = {2, 6, 9, 3}

 [3] = {3, 5, 0, 2}

 [4] = {4, }

We need to conrm the properties of  an 

equivalence relation.

Add the two equations.

Expand.

Rearrange and factorize.

Since the product is divisible by 7  

b = a − 7n or b = 7n − a + 1 

substitute a = 1 and n = 0, 1, 2

substitute a = 2 and n = 0, 1, 2

substitute a = 3 and n = 0, 1, 2

substitute a = 4 and n = 0, 1, 2

The next example illustrates how the innite set Z2 is partitioned into  

six equivalence classes.
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Example 

The relation R is dened on Z × Z such that (a, b)R(c, d ) if  and only if

a − c is divisible by 2 and b − d is divisible by 3.

a Show that R is an equivalence relation.

b Find the equivalence class for (, 3).

c Write down the ve remaining equivalence classes.

a  Reexive: (x, y)R(x, y)

  since x − x = 0 and y − y = 0

 which are both divisible by 2 and 3

 so R is reexive.

 Symmetric:

 (x, y)R(a, b)

⇒ x − a = 2m, m ∈Z

⇒ a − x = −2m

y − b = 3n, n ∈Z

⇒ b − y = −3n so R is symmetric.

 Transitive:

 (x, y)R(a, b) and (a, b)R(c, d )

− = ⎫
⎬

− = ⎭

2

2

x a p

a c p
⇒ − = +2( )x c p q

y b m

b c n
y c m n

− =

− =

⎫
⎬
⎭
⇒ − = +

3

3
3( )

 (x, y)R(c, d ) so R is transitive.

 Therefore R is an equivalence relation.

b (x, y)R(, 3)

 Let x −  = 2m ⇒ x = 2m + 

y − 3 = 3n ⇒ y = 3n + 3 = 3n

 So

  [(, 3)] = {(x, y)| x = 2m + , y = 3n,  

m, n elements of  Z} 

c The other equivalence classes will be 

 {(x, y)| x = 2m, y = 3n} i.e. [(2,3)]

 {(x, y)| x = 2m, y = 3n + l} i.e. [(2,)]

 {(x, y)| x = 2m, y = 3n + 2} i.e. [(2,2)]

 {(x, y)| x = 2m + , y = 3n + l} i.e. [(,)]

 {(x, y)| x = 2m + , y = 3n + 2} i.e. [(,2)]

We need to conrm the properties of  an 

equivalence relation.

Since n is any integer we can write 3n.
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Example 

The relation R is dened on cubic polynomials P of  the form  

P
n

(z) = z3 + az2 + bz where a, b ∈R, z ∈C

The relation R is dened by P

RP

2
 if  and only if  the

sum of  the three zeros of  P

 is equal to the sum of  the three zeros of  P

2

a Show that R is an equivalence relation.

b Determine the equivalence class containing z3 − 2z2 + 8z

a Let the zeros of P
n

(z) be α
n
, β

n
, γ

n

 Since P
n
(z) = z (z2 + az + b)

 We know that α
n
 = 0 for all n

 So sum of  roots becomes β
n
 + γ

n
 = −a

 Reexive:

P
n
(z )RP

n
(z )

  The sum of  the zeros of  P
n

(z) is equal to  

the sum of  the zeros of  P
n

(z)

 Symmetric:

P

(z)RP

2
(z) ⇒ β


+ γ


 = β

2
+ γ

2
 = −a  

⇒ P
2 
RP



 Transitive:

P

(z)RP

2
(z) ⇒ β


 + γ


 = β

2
 + γ

2
 = −a 

P
2
RP

3
⇒ β

2
 + γ

2
 = β

3
 + γ

3
 = −a

⇒ β
 
+ γ


 = β

3
 + γ

3

⇒ P
l
(z)RP

3
(z)

  Therefore R is an equivalence  

relation.

b  The equivalence class  

containing z  3 − 2z  2 + 8z consists  

of  cubic polynomials of  the  

form z  3 − 2z  2 + bz

Using Viete’s theorem about sum and product  

of  roots.

Coecient of  z 2 is the same in both cubic 

polynomials.

Coecient of  z 2 is the same in all three cubic 

polynimials.

Using Viete’s theorem.

One of  the roots is zero and the sum of  roots 

must be two. The product of  the two remaining 

zeros could be any number.
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Exercise 1F

1 Consider the set of  words:

W = {set, table, chair, car, tennis, bike, stairs, sea, wave, sun}.

In a and b, show that R is an equivalence relation  

and list the equivalence classes induced by each relation on W

 a R is the relation on W, “has the same number of  letters”.

 b  R is the relation on W, “starts with the same letter  

of  the alphabet”.

2 a  Let L = {l
i
|l

i
 is a line segment of  length |l

i
|}. Let R be a relation  

on L such that l
i
R l

j
⇔ |l

i
| = |l

j
|. Show that this is an equivalence  

relation on L and describe the partition induced by R.

 b  Let P = {polygons} and R be a relation on P such that  

aRb ⇔ ‘a has the same number of sides as b ’. Show that R is 

an equivalence relation and describe the partitions induced by R.

3 Let P = { f  (x)| f (x) = ax2 + bx + c, with a, b, c ∈ R}. The relation

R on P is such that f  (x)Rg(x) ⇔ f (0) = g(0). Show that R is an  

equivalence relation and describe the partition induced by R on P.

4 Let S = {(x, y)| x, y ∈ R}. Let R be a relation on S such that 

aRb ⇒ a2 + b  2 = r  2 where r ∈R+

  Show that R is an equivalence relation and give a geometric  

meaning of  the partitions of  R × R under this relation.

5 Let R be a relation on Z+ such that aRb ⇔ a + 2b is divisible by 3.  

Show that R is an equivalence relation and list the equivalence  

classes of  Z+ under this relation.

6 Let R be a relation dened on Z+ such that aRb ⇔ a2 = b  2 (mod 3).  

Show that R is an equivalence relation and list the equivalence  

classes of  Z+ under this relation.

7 Show that the relation R dened on R2 such that (a, b)R(c, d ) ⇔ a = c

is an equivalence relation and give a geometrical description of  the  

equivalence class [(a, b)].

8 Show that the relation R dened on (Z+)2 such that (a, b)R(c, d ) ⇔ ad = cb

is an equivalence relation. Describe the equivalence class [(l, 2)].  

Hence or otherwise describe the partition induced by R on (Z+) 2

9 Let R be a relation dened on {R2 \ (0, 0)} such that 

(a, b)R(c, d ) ⇔ ab = cd. Show that R is an equivalence relation on  

{R2 \ (0, 0)}. Describe the equivalence class [(l, l)]. Hence or otherwise  

describe the partition induced by R.
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10 Consider the relation R on Q such that xRy ⇒ x − y ∈Z

 a Show that this is an equivalence relation.

 b Determine the equivalence class [0] for this relation.

 c Determine the equivalence class ⎡ ⎤
⎢ ⎥
⎣ ⎦

3

4
 for this relation.

 d Describe the partition induced by R on the rational numbers.

Review exercise
EXAM-STYLE QUESTIONS

1 A, B and C are subsets of  the universal set U

 a Use Venn diagrams to illustrate

i A\B = A ∩ (U \ B)

  ii (A\B ) ∪ (B\ A) = (A ∪ B )\(A ∩ B )

 b Use double inclusion to prove that A\B = A ∩ (U \ B ).

 c  Use De Morgan’s laws to prove that (A\B ) ∪ (B\A)  

= (A ∪ B )\(A ∩ B ).

2 A, B and C are subsets of  the universal set U. Use Venn diagrams 

to illustrate the distributive laws. Use these properties and 

De Morgan’s laws to show that (A′ ∩ B ) ∪ C ′ = (A ∩ C)′∩ (B′ ∩ C )′

3 The relation R on C\{0} is dened as: z

R z

2
⇔ arg z


 = arg z

2
 for z


, z

2
∈C\{0}.

 a Show that R is an equivalence relation on C

 b Describe the equivalence classes under the relation R.

4 Sets A, B, C, D and E are subsets of  Z:

 A = {n | 0 < n < 20, n is a prime number} 

 B = {n || n − 2|≤ l} 

 C = {n | n2 − 3n − 4 < 0} 

 D = {n | n5 = 6n} 

 E = {n |(n − )2 ≤ 4}

 a List the elements of  each of  these sets.

 b  Determine, giving reasons, which of  the following statements  

are true and which are false.

  i n(A) = n(D) + n(E )

  ii n(D ∩ A′) = 1

  iii B ⊂ E

  iv (D \ B ) ∩ A = ∅

  v C Δ E = ∅
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5 Let R be a relation on Z such that aRb ⇔ 5ab ≤ 0.

 a Determine whether R is

  i reexive

  ii symmetric

  iii transitive.

 b  Write down whether or not R is an equivalence relation and give  

a reason for your answer.

6 The relation R is dened on the set N such that for  

a, b ∈N, aRb ⇔ a3
≡ b3 (mod 5).

 a Show that R is an equivalence relation.

 b Denote the equivalence class containing n by C
n

  i Find C
0

  ii List the rst six elements of C
1

  iii Prove that C
n

= C 
n+5

 for all n ∈ N

7 P is the set of  polynomials of  the form P (z) = z2 + bz + c

where b, c ∈ R and z ∈ C

 a  The relation S on the set P is such that P
1
RP

2
⇔ the sum of  the  

zeros of  P
1
 is equal to the sum of  the zeros of P

2

  i Show that S is an equivalence relation.

  ii  Determine the equivalence class containing the polynomial

P = z2 − 3z + 4.

 b  The relation R on the set P is such that P
1
RP

2
⇔ the product  

of  the zeros of  P
1
 is equal to the product of  the zeros of P

2

  i Show that R is an equivalence relation.

  ii  Determine the equivalence class containing the polynomial

P = z2 − 3z + 4.

8 The relation R is dened on Z+ such that aRb ⇔ 5
a

≡ 5
b
 (mod 8).

 a Show that R is an equivalence relation.

 b Identify the two equivalence classes formed by this relation.

 c Find the value of  5355(mod 8).

9 The relation R is dened on Z × Z such that (a, b)R(c, d )  

if  and only if  a = c and b − d is divisible by 5.

 a Prove that R is an equivalence relation.

 b Describe the equivalence classes induced by R.
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Chapter  summary
A set S is a collection of  objects. If  x is one of  these objects we say x ∈S

The number of  elements in a set is called the cardinality of  the set.

The empty set denoted by ∅ = { }

B ⊆ A and A B A B⊆ ⇔ = . The converse of  this is also true,  

i.e. if  A and B are equal sets then A is a subset of  B and B is a subset of  A.

If  set S ⊆ U, then the complement of  S is denoted by S ′ where ′ = ∈ ∉S x U x S{ | }

The intersection of  two sets A and B is denoted by A ∩ B where

A B x x A x B∩ = ∈ ∈{ | }and

The union of  two sets A and B is denoted by A ∪ B where A B x x A x B∪ = ∈ ∈{ | }or

If  A B∩ = ∅ then A and B are said to be disjoint sets.

The set consisting of  those elements that are in set A but not in set B is called  

the set dierence B from A denoted by { } ′= ∈ ∉ = ∩\ | andA B x x A x B A B

The symmetric dierence of  two sets A and B is denoted by A Δ B and consists  

of  those elements which are either in A or in B but not in both A and B.

Δ = ∪ ∩ = ∪( ) \ ( ) ( \ ) ( \ )A B A B A B A B B A

The power set of  a nite set S with n elements is the set of  all subsets of   

S including the empty set ∅ and S itself. The total number of  distinct subsets  

of  a nite set S with n elements is 2n. n(P (S )) = 2n

10 The relation S is dened on quadratic polynomials P of the form:

  P (z) = z2 + az + b, where a, b ∈R, z ∈C

  The relation S is dened by P

SP

2
 if  and only if  P


 and P

2
 have  

at least one zero in common. Determine whether or not S is transitive.

11 The points in a plane or space are given. AB is a directed line  

segment where A is the starting point and B is the terminal point.  

AB R CD if  line segments [AD] and [BC] have a common midpoint.

a Show that R is an equivalence relation.

b Give a geometrical description of  the partition of  all the directed line  

segments in a plane or space.
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Commutative Laws

A B B A

A B B A

∪ = ∪

∩ = ∩

Distributive laws

A B C A B A C∩ ∪ = ∩ ∪ ∩( ) ( ) ( ), i.e. intersection is distributive over union

A B C A B A C∪ ∩ = ∪ ∩ ∪( ) ( ) ( ), i.e. union is distributive over intersection

Associative laws

A B C A B C∩ ∩ = ∩ ∩( ) ( )

A B C A B C∪ ∪ = ∪ ∪( ) ( )

De Morgan’s Laws

(A ∩ B)′ = A′∪B ′

(A ∪ B)′ = A′∩ B ′

Cartesian product

A B× = ∈ ∈{ }( , ) : ,a b a A b B

A relation R dened on a set A is said to be an equivalence relation if  the  

following three conditions are true:

● R is reexive, i.e. aRa for all a ∈ A

● R is symmetric, i.e. aRb ⇒ bRa for all a, b ∈ A

● R is transitive, i.e. aRb and bRc ⇒ aRc for all a, b, c ∈ A

a is congruent to b modulo n if  n divides (a – b), i.e. a – b = kn, k ∈Z

Notation: ≡ ⇔ −(mod )a b n n a b

An equivalence class [ x ] under an equivalence relation R on a set A is  

the set of  all elements related to x in A, i.e. [ ] { }= ∈| ,x a a A aRx

A partition of  a set A consists of  another set P made up of  non-empty  

subsets of  A which are disjoint and whose union makes up the whole set.

Equivalence classes are mutually exclusive and the set A is partitioned  

into equivalence classes by an equivalence relation R on A
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Extension of 
the concept 
of function

2
CHAPTER OBJECTIVES:

8.3 Functions: injections, surjections, bijections; composition of functions and 

inverse functions.

8.4 Binary operations and operation tables (Cayley tables).

8.5 Binary operations: associative, distributive and commutative properties.

8.6 The identity element e

 The inverse a–1 of an element a

 Proof that left-cancellation and right-cancellation by an element a hold, provided 

that a has an inverse.

 Proofs of the uniqueness of the identity and inverse elements.

Before you start

1 Find the intervals for which the function

f x
x

x
( ) =

10

2
, x ≠ 2 is increasing or 

 decreasing. Find the derivative:

′ = =
− −

f x
x x

x x
( )

( )( )

( ) ( )

2 10 10

2

20

22 2

 Since f  ′(x) < 0 for all values of  x in the 

domain, it follows that f  (x) is a strictly 

decreasing function.

2 Find the inverse of  the function 

f x
x

x
( ) =

+ 1

1
, where x ∈ R, x ≠ 1

 and state its domain.

 Interchange y and x, and make x the 

subject of  the formula:
+

=
1

1

y

y
x ⇒ x ( y – 1) = y + 1

 ⇒ xy – y = x + 1

⇒ 
1

1

x

x
y

+
=

1 1

1
( )

x

x
f x

+
=  where x ∈ R, x ≠ 1

1 When a certain drug is administered, 

the concentration of  medication in the 

bloodstream t hours after the drug is 

 administered is given by: A t
t

t
( ) =



4

3 272

a  Over which interval of  time is 

the concentration of  medication 

increasing?

b  Over which interval is the 

concentration decreasing?

2 Find the inverse function for each of  the 

following:

a f  : x 
+ 3

+ 2

x

x

, x ≠ -2

b f  : x  2x

c f  : x  ex − 2e −x



Chapter 2 47

Evolution of the function concept

So far you have studied functions as formulas dened on real 

number sets where every ordered pair (x, y) ∈R2 represented a 

dependent variable y ∈R which was a function of  x ∈R, the 

independent variable. You learned that, for any given function, there 

is a rule that determines the unique value of  y for any value of  x and 

this could be illustrated by a graph of  this function, e.g. the ordered 

pair (–, 5) would be a point on the graph of  f (x) = 2x2 + 3.

The term “function” rst appeared in a letter written by Leibniz in 

673. He used it to describe quantities related to curves. In 755 

Euler introduced a more general concept when he wrote “When 

certain quantities depend on others in such a way that they undergo a change 

when the latter change, then the rst are called functions of  the second.”

In the 9th century more emphasis was placed on rigour in 

mathematics. The notion of  function continued to evolve with the 

development of  Set Theory by Cantor. Cauchy was the rst to 

consider the fact that a function may have a restricted domain.  

This eventually led to the denition of  functions by Dedekind in 

888 that said a function is a single-valued relation between two 

non-empty sets. However the most accurate denition of  a function 

was given by Nicolas Bourbaki in 939 which described a function 

as a possibly innite set of  ordered pairs (x, y) in which each x is 

paired with only one y.

 The name Nicolas 

Bourbaki does not 

represent just a single 

mathematician. A small 

group of French 

mathematicians used this 

name as a pseudonym in 

the mid 1930’s. The 

group was originally 

formed to write rigorous 

textbooks based on Set 

Theory initiated by Cantor.

However their work 

included studies of many 

branches of mathematics 

including Topology.
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2.1 Functions as relations

A relation that associates each element in a non-empty set S with a  

unique element in a non-empty set T is called a function from S to T

A function from S to T is a subset M of  S × T such that for every s ∈ S

there is a unique t ∈ T such that (s, t) ∈ M

For example: S = {2, 3, 4}, T = {, 2, 3, ... , 9} and M = {(2, 5), (3, 7), (4, 9)}.  

We can represent this pictorially as shown here.

2

S T

3

4

2

1

3

4

5

6

7

8

9

2 is mapped onto 5 so we say that 5 is the image of  2 under this function.

The function has a rule that enables us to nd the image of  every element  

of  S under f. In this case the rule is f  (s) = 2s + .

We denote this function by f  : S → T such that s  2s +  for all s ∈ S

The set S is called the domain and T, the target set, is called the 

co-domain. The set f  (S ) = {t|t ∈T, t = f  (s) for some s ∈S} is called  

the range. It is the set containing all the images of  S under the  

function f. In the above example the range is the set {5, 7, 9}.

Example 

Determine which of  the following relations are functions, and state the domain  

and the range for those which are functions.

a

–1

0

1

0

1

2

b

9

1

0

–3

–1

0

1

3

c

7

3

1

0

1

2

3

a This is a function.

 Domain {–, 0, }, Range {0, }

b This is not a function.

  In this relation 9 and  are mapped to ±3  

and ± respectively, hence 9 and  are not 

mapped to unique elements.

c This is a function.

 Domain {, 3, 7}, Range {0, , 3} 

Each element on the domain has a unique 

image in the co-domain.

Each element is mapped to a unique image.
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Example 

Determine which of  these relations are functions:

a R on Z such that aRb ⇔ a2 = b2

b R on R+ such that aRb ⇔ a2 = b2 – 

a This is not a function.

R since 2 = 2

R (–) since 2 = (–)2

Therefore  is mapped to two distinct elements 

so it is not a function.

b Suppose this is not a function. Then:

aRb ⇒ a2 = b2 – 

aRc ⇒ a2 = c2 – 

⇒ b2 = c2

b = c

Therefore R is a function.

Subtraction of  the two equations yields:  

0 = b2 – c2

Since R is dened on R+

Proved by contradiction.

There are two rules governing functions as follows:

 f (s) must specify an element of  T for every s ∈ S

 if s = s′ and both s, s′ ∈S then f (s) = f (s′)

Although the above rules may look trivial, they actually have strong  

implications. They make sure that there are no contradictory or  

ambiguous connotations. Let’s take the example of  a function dened  

on the rational numbers as follows:

Let f :ℚ → ℚ such that f
p

q

q

p

⎛

⎝
⎜

⎞

⎠
⎟ =

Because the domain of  this function is ℚ, every element of  ℚ must have  

an image in ℚ. However by the denition of  this function it is clear that  

0 does not have an image because division by zero is undened. In other  

words the rst rule ensures that we do not have any singularities.

You have met and discussed singularities in the core book, when  

discussing limits and graphs of functions. At a singularity the mathematical 

function is not dened or is not “well-behaved”, e.g. f x
x

x
( ) =

+

2
1

1
 has a 

singularitiy at x = –1 and the graph is a straight line with a ‘hole’ at x = –1. 

Similarly the function f x
x

( ) =

1
is not dened when x = 0 and so this is a 

vertical asymptote. The function also has a singularity at x = 0. The function  

f(x) = |x – 1| is continuous but it is not differentiable at x = 1. Once more there 

is a singularity at x = 1. The function is said to be “not well-behaved” at x = 1.

The second rule ensures that the function is well-dened. In other words,  

it ensures that each element of  the domain has only one image in the co-domain.

This is illustrated by the following example in which the rule is violated.
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Suppose that f :ℚ → ℚ such that f
p

q q

⎛

⎝
⎜

⎞

⎠
⎟ =

1

But f
2

5

1

5

⎛

⎝
⎜

⎞

⎠
⎟ =  and f

10

25

1

25

⎛

⎝
⎜

⎞

⎠
⎟ =  which violates the second rule 

governing functions.

Equality of functions

Two functions f : S → T and g : P → Q are equal if  and only if S = P,  

f (S ) = g (P ) and f (a) = g (a) for all values of  a ∈ S. 

We can illustrate this property by looking at some functions.

Consider the functions f :R\{0} → R\{0} such that f x
x

x
( ) =

2
,

and g g x
x

: \{ } \{ } ( ) 0 0
1

→ =such that

These two functions are equal because they both have the same domain  

which excludes x = 0 and for all values of  x in the domain, f (x) = g (x).

Now let us dene another two functions as follows:

f (x) = x with domain x ∈R

g (x) = arccos(cosx) with domain x ∈R

If  we compare these two functions we see that f (2π) = 2π, but  

g (2π) = arccos(cos2π) = arccos() = 0. The image of  2π under f  is  

dierent to the image of  2π under g, so the functions are not equal. 

These two functions are equal only if  we restrict both domains to  

x ∈R, 0 ≤ x < 2π

Denition

A function is said to be injective if  it preserves distinctness. In other 

words, every element of  the co-domain is mapped to by no more 

than one element in the domain. A function f :S → T for which 

each element of  the range, f (S), corresponds to exactly one element 

of  the domain, S, is said to be injective. In other words, if  f (a) = 

f (b) ⇒ a = b for a, b ∈S. A logically equivalent statement would be:

a ≠ b ⇒ f (a) ≠ f (b)

We say that an injective function is one in which each element of   

f (S), the range of  the function, is the image of  only one element of  S,  

the domain of  the function. An injective function is therefore a  

one-to-one function.

For a function to be 

injective we can state 

that if a is not equal to 

b in the domain, then 

f(a) is not equal to f(b) 

in the co-domain. 

The contrapositive

statement of this is 

that if f(a) = f(b) 

then a = b. 

Contrapositive 

statements are useful 

when it is difcult 

to examine all the 

different elements of 

the domain to check 

for unique images in 

the co-domain. Then 

it is much easier to 

check by using the 

logically equivalent 

contrapositive 

statement.
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1

4

–2

–1

0

1

2

–1

0

1

–1

0

1

–1

0

1

2

–1

–2

1

0

2

3

4

One-to-many :not a function Many-to-one : is a function One-to-one : injective function

The diagrams above illustrate three types of  mapping.

 The rst mapping is not a function because elements  and 4 both  

have two images in the co-domain.

 The second mapping is a function because each element in the  

domain is mapped onto a unique element in the co-domain.

It is not injective because  ∈ co-domain is the image of  − and  

 in the domain. Alternatively we can say that two dierent  

elements  and − from the domain don't have two dierent  

images in the co-domain but have the same image of  . The  

function doesn't preserve distinctness.

 The third mapping is a function because each element in the domain is mapped  

onto a unique element in the co-domain. It is also injective because each  

element in the range is the image of  only one element in the domain.

Denition

If  every element in the co-domain of  a function is the image of  at 

least one element in the domain we say that the function is a 

surjection, i.e. for all b in the co-domain there exists an a in the 

domain such that f (a) = b. A surjection is also called an onto function.

None of  the previous three examples represent surjections. The two  

examples below illustrate surjections.

–1

–2

0

1

0

1

2

0

–1

1

2

0

–2

2

4

Many-to-one : surjection One-to-one correspondence : injection and surjection

To check for injection we look at the elements in the domain and  

check that dierent elements have dierent images in the co-domain.

We can establish a relationship between the cardinality of  sets S and  

T as follows: n(S ) ≤ n(T ). For a surjection we look at the elements in  

the co-domain and check that they are all images. So for a surjection,  

n(T ) ≤ n(S ). If  a function is both surjective and injective then

n(S ) = n(T ). This is the case in the second mapping above.
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Denition

A function is a bijection if  it is an injection and a surjection.  

A bijection is also called a one-to-one correspondence.

In the core book we studied functions of real variables, i.e. when the domain 

was a subset of R. It is good to remember that a graph that did not pass the 

vertical line test did not represent a function. This is a one-to-many relation.

If a function passed the horizontal line test then the function is an injective 

function. Graphically speaking, if a horizontal line drawn in any region of the 

co-domain crosses the graph exactly once then the function is a bijection. 

We also say that the function is surjective if any horizontal line drawn in any 

region of the co-domain crosses the graph at least once.

Example 

A = {, 2, 3, 4} and B = {5, 6, 7, 8, 9}. Given that f : A → B such that  

f (x) = x + 4, determine whether f  is an injection, a surjection or both.

f (a) = f (b)

⇒ a + 4 = b + 4

⇒ a = b

So f  is an injection.

Let y ∈ B ⇒ y = x + 4, x ∈ A

⇒ x = y – 4

y = 9 ⇒ x = 5 5 ∉ A

So f  is not a surjection.

Assume two elements in the co-domain are equal.

Prove that they are the images of  the same element 

in the domain.

Given any element in the co-domain try to nd an 

element in the domain which maps onto it. It is 

sucient to nd one such element for which the 

statement is not true.

Example 

Given f :Z → Z such that f (x) = x + 4, determine whether f  is an injection,  

a surjection or both.

f (a) = f (b)

⇒ a + 4 = b + 4

⇒ a = b

So f  is an injection.

Let y ∈ Z ⇒ y = x + 4, x ∈Z ⇒ x = y − 4 

since for all y ∈Z, y – 4 ∈Z, f  is a 

surjection.

Use the contrapositive statement of  injective 

functions.

Check that each element in the co-domain is the 

image of  an element in the domain.
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Examples 3 and 4 involve discrete functions. In Example 3 the functions were  

mappings between nite sets, and in Example 4 they were mappings between  

innite sets. We now look at examples with functions as mappings between  

innite continuous sets.

Example 

The function f  is dened by f  :R+ → R+ where f  (x) = e cos2x + .

a Find the exact range, A, of  f

b i Explain why f is not an injection.

ii Giving a reason, state whether or not f is a surjection.

a  The range of  cos2x is the interval [−, ], 

so A = [e− + , e + ]

b i Method I

   For f to be an injection or one-to-one 

function, x ≠ y ⇒ f  (x) ≠ f  (y)

f  (0) = f  (nπ) = e + , n ∈ 

  Therefore f is not an injection.

Method II

f  (x) = e cos2x + 

⇒ f  ′(x) = −(2sin 2x)e cos2x

⇒ f  ′(x) < 0 for 0 < x < 
π

2

  and f  ′(x) > 0 for 
π

2
 < x < π

   Since f  (x) is not strictly increasing or 

decreasing over the whole domain it 

is not injective.

ii  The co-domain of  f is R+ but the 

range of  f is A = [e− + , e + ]  

i.e. for y ∈ R+, y ∉ A there is no x ∈ R+

such that f (x) = y. Therefore f is not 

surjective.

Find the minimum and maximum values that 

cos2x can take to nd the range of  f.

We know from the core syllabus that f  is a 

periodic function. Use a counter example to show 

that f  is not injective.

Since the function is continuous and 

dierentiable over the whole domain we can use 

the derivative. 

Use the result of  part a to show that f  is not a 

surjection.

Note that the derivative test shown in the second method can be used 

only for functions that are continuous and differentiable on the given 

domain. It is not valid for functions that are discrete, like the ones in 

Examples 3 and 4.



Extension of the concept of function54

Example 

Consider the following functions:

f : ]2, +∞[→ R+ where f  (x) = (x − 2)(x + )  

g : R × R → R × R where g (x, y) = (cos(x − y), x − y)

a Show that f is bijective.

b Determine, with reasons, whether

i g is injective

ii g is surjective.

a Method I

Injective: f  (a) = f  (b)

⇒ (a − 2)(a + ) = (b − 2)(b + )

⇒ a2 − a − b2 + b = 0

Use quadratic formula to solve for a:

=
± − −b b

a

21 1 4( )

2

( )± −

− +

=

=

1 1 2

2

(1 1 2 )

2

| |b

b

⇒ a = b

So f  (x) is an injection.

Surjective: Let f  (x) = y

⇒ y = x2 − x − 2 ⇒ x2 − x − 2 − y = 0

+ +

⇒ =
1 9 4

2

y
x

For all y ∈R+, +9 4y  > 3, so x > 2.  

Therefore for all y ∈R+ there is x ∈]2, +∞[ such 

that f  (x) = y. 

Therefore f is a surjection.  

Since f is injective and surjective it is a bijection.

Method II

Sketch the graph of  f  :

0
–1
–1

–2

–3

1

–2–3 1 2 3

2

3

4

Solve for a.

x
2  =|x| and since b > 2 we have  

|1 − 2b|= −1 + 2b. The second solution is 

discarded because it is out of  the domain.

Show that for all possible values of  y in  

the co-domain, there is a value of  x in the 

domain.

Use the graph of  f  with the horizontal  

line test.
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The graph of  f passes the horizontal line test, 

therefore f  is injective. 

From the graph it is clear that the range of  f  is 

equal to the co-domain so f   is surjective.

Since f is both an injection and a surjection  

it is a bijection.

b i g (2π, π) = g 
π π5

4 4
,

 Therefore it is not injective.

ii  The range of  g is contained in  

[−, ] × R ≠ R × R so g is not surjective.

Compare range and co-domain on graph.

Find a counterexample.

−1 ≤ cos(x − y) ≤ 1

In all the examples above the domains are real numbers or ordered pairs.

However by our denitions of  functions we may have domains or co-domains  

that are not subsets of  R or R2. The following example illustrates this.

Example 

Let { }− −

− −= = + + + + + ∈ ∈1 2

1 2 1 0( )| ( )  ... , ,n n n

n n n iP p x p x a x a x a x a x a a n 

and f  : P → P  such that f  (   p
n
) = p

n
′. Determine whether f  is an injection,  

a surjection or both.

f  (  p
i
) = f (  p

j
) ⇔ p

i
′ = p

j
′

This is true even when

p
i
 = a

n
x n + a

n−
x n− + ...+ a


x + a

0

p
j
 = a

n
x n + a

n−
x n− + ...+ a


x + b

0
, a

0
 ≠ b

0

So f is not injective.

Let p
i
∈ P such that f  ( p

i
) = p

⇒ p = p
i
′

Then p pdxi = ∫  and there are innitely 

many p
i
∈ P that satisfy this condition.

Therefore f is surjective.

Use the contrapositive statement of  injective 

functions.

Since ∫  pdx =  q + c where q is a polynomial of  

degree n + 1 and c can take any real value.

In Chapter  you learned that the cardinality of  a set S, denoted by n (S ), is the  

number of  elements in the set S. In the following theorem we are going to use  

the cardinality of  nite sets to obtain two results for injection and surjection  

of  functions with nite domains and co-domains.

Theorem 1

Let f  : S → T where S and T are nite sets. 

Then    a ( )( ) ( )⇔ = is injectivef n f S n S

b ( )( ) ( )⇔ =is surjectivef n f S n T
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Proof: 

a ( )( ) ( )⇔ =is injectivef n f S n S

⇒ For any function we know that n (  f  (S)) ≤ n(S ) since we cannot  

have more images than we have elements in the domain. 

Let’s assume that n (  f  (S )) < n(S ). Then there must be at least one  

pair of  dierent elements in S that have the same image, which is  

in contradiction with the fact that f  is injective. Therefore  

n(f  (S )) = n(S ).

⇐ If  S = {x

, x

2
, ..., x

n
} then { f  (x)} = { f  (x


), f  (x

2
), ..., f  (x

n
)}.  

If  f  (x
i
) = f  (x

j
) for some i ≠ j then n(  f  (S )) ≤ n − , which is a  

contradiction. Therefore, f  is injective. Q.E.D.

b ( )( ) ( )⇔ =is surjectivef n f S n T

⇒ Suppose f  is surjective.

Then each y ∈ T is the image of  an element x ∈ S

Therefore ⊆ ( )T f S

But by denition of  range and co-domain, ⊆( )f S T

Therefore, by double inclusion, ( )= ⇒ =( ) ( ) ( )T f S n T n f S

⇐ Suppose that ( ) =( ) ( )n f S n T

We know that ⊆( )f S T

But since both  f  (S) and T have the same number of  elements it follows  

that = ⇒ =( ) ( )f S T y f x  for each y ∈ T ⇒ surjection. Q.E.D.

In the core syllabus you studied functions on real numbers.

Consider the function f :  →  such that f  (x) = x. We can easily 

see that this is a bijection.

f x f x x x( ) ( )1 2 1 2= ⇒ = so it is an injection.

For every x ∈R, there is an x ∈R, such that f  (x) = x, therefore it 

is a surjection. This function is called the identity function

because it assigns every element to itself.

Example 8 is another illustration of  how the derivative can be  

used to check injectivity; parts a and c are a little more challenging.
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Example 

Determine which of  the following functions are injective given that in  

each case f :R → R

a f (x) = 3x2 + 7x – 2 

b f (x) = x5

c
2

3 1

e
( ) = e

x

xf x −

a f (x) = 3x2 + 7x − 2 is continuous over R

f ′(x) = 6x + 7

⇒ ′ ≥ ≥ −f x x( ) 0
7

6
when

and  when′ < < −f x x( ) 0
7

6

Since f (x) has a turning point, i.e. f (x) is not strictly 

increasing or decreasing, it is not injective.

b f (x) = x5 is continuous over R

f ′(x) = 5x 4 ≥ 0 for all x ∈R

Hence f (x) is increasing for all x ∈R which means  

that it is injective.

c f x x

x
( ) = e

e

3 1
2

 is continuous over R

′ = + > ∈f x xx x( ) 3 2 03 2e e for all 

Hence since f (x) is increasing for all x ∈R, 

it must be injective.

Check for continuity and use 

derivative.

Exercise 2A

1 A and B are two non-empty sets, X, Y ⊂ A, and f :A → B

Show that:

a f (X ∪ Y ) = f (X ) ∪ f (Y )

b f (X ∩ Y ) ⊆ f (X ) ∩ f (Y )

2 Determine which of  these mappings are functions:

a f :ℚ → ℚ such that f
m

n mn

⎛

⎝
⎜

⎞

⎠
⎟ =

1

b f :ℚ → ℚ such that f
m

n m n

⎛

⎝
⎜

⎞

⎠
⎟ = +

1 1

c f :ℕ → ℚ such that f m
m

( ) =

1
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3 Let G denote the set of  citizens of  Germany. Determine which of   

the following statements correctly specify a function.

 a  f  : G → G, f  (x) is “the mother of  x”

b g : G → G, g (x) is “the daughter of  x”

c h : G → G, h (x) “the sister of  x”

4 The function f  : R+ × R+
 → R+ × R+ is dened by  

f  (x, y) = (x + 2y, x

y

). Show that f is a bijection.

5 P is the set of  all polynomials: 
=

⎧ ⎫
= ∈ ∈⎨ ⎬
⎩ ⎭
∑

0

| ,  
n

i

i i

i

P a x n a 

 Let g :P → P, g (  p) = x 2 p. Determine whether g is

a surjective   b injective.

6 Determine which of  the following functions are

a injective   b surjective.

  i f → ∞0 , f  (x) = e x ii f  : [0, 1] → R,  f  (x) = tan x

iii f f n
n n

n n
: , ( ) → =

+⎧
⎨
⎩

if  is odd

if  is even

1

1

7 Let 2 2 2,: ( ) ( ) such that  ( , ) ,
x

y
f f x y xy+ +

→ = 

 Show that f is a bijection.

8 Determine which of  the following functions, f  : + × +
 → +, are

a injective   b surjective

  i f  (n, m) = nm ii f n m
nm m

( , )
( )

=
+ 1

2

  iii += 3 7( , ) n mf n m

9 The function f  : R → R is dened by 
+

=
1 2e

1 2e
( )

x

x
f x

a Find the range of  f

 b Sketch the graph of  f.

 c Prove that f  is an injection.

10 Consider the functions f and g, dened by

f  :  →  where f  (n) = 5n + 4

g : R × R → R × R where g (x, y) = (x + 2y, 3x − 5y)

 Determine whether:

 a the function f is surjective

 b the function f is injective

 c the function g is surjective

 d the function g is injective.
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Composition of functions

If  the co-domain of  a function g is equal to the domain of  a second  

function f, the two functions can be combined. The composition of   

the functions g and f is denoted by f o g. The diagram below  

illustrates this.

The composite 

function (fog)(x) is 

also denoted  

by f (g (x))

2

1

3

b

a

A

g

B

c

β

α

B

f

C

γ

b

a

c

β

α

BA

f

f  g

g

C

γ

b

a

c

2

1

3

°

Note that g (3) = a and f (a) = α ⇒ ( f o g)(3) = α.

We can show that given two functions f and g such that the domain of   

f is the co-domain of  g, their composition h = f o g is also a function.

Theorem 2

If g:A → B, f :B → C are functions, then f g A C : →  is also a function.

Proof:

Since g is a function we know that for every a ∈ A there is an element  

b ∈ B such that g (a) = b

Since f  is a function and b is in the domain of  f, we know that there is  

an element c ∈ C such that f (b) = c

Combining the two we obtain that for every a ∈ A there is a c ∈ C such  

that ( ) ( ) ( ( )) ( )f g a f g a f b c = = = , making it a function. Q.E.D.
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Example 

Given that f  : R → R such that f  (x) = ex and g : R → R such that g (x) = x 2

a Find

i ( ) ( )f g x ii ( ) ( )g f x

b Comment about your results to a i and a ii

c Check each of  the composite functions for injective and surjective properties.

a i ( f  g)(x) = f  ( g(x)) = f  (x 2) = ex 
2

ii = = = =
2 2( ) ( ) ( ( )) (e ) (e ) ex x xg f x g f x g

b e x 
2

 ≠ e 2x for every x element of  R. Composition

 of  functions is not commutative.

c Method I

Using the result in a i

( ) ( ) ( )( )f g x f g x 1 2=

⇒ =

2 2

1 2e e
x x

⇒ =x x
1

2

2

2

⇒ x


= ± x
2

So ( f  g)(x) is not an injection.

Method II

′ =

2

( ) ( ) 2 exf g x x

′⇒ ≥ ≥( ) ( ) 0 when 0f g x x

and when( ) ( )f g x x ′ < <0 0

Hence ( f  g)(x) is not continuously increasing or 

decreasing since there is a turning point so it is 

not injective.

Let y ∈R such that ( f  g)(x) = y ⇒ =

2

e
x

y  > 0 

Then for all y ≤ 0 there is no x ∈ R such that  

( f  g)(x) = y

Therefore ( f  g)(x) is not a surjection.

Using the result in a ii:

=
2( )( ) e xg f x

′⇒ = >
2( ) ( ) 2e 0xg f x

⇒ g  f  is a strictly increasing function.

Therefore ( g  f  )(x) is an injection.

Let y ∈R such that ( g  f  )(x) = y ⇒ = >
2

e 0
x

y

Then for all y ≤ 0 there is no x ∈R such that  

( g  f  )(x) = y

Therefore ( g  f  )(x) is not a surjection.

Remember the correct order when working 

out composite functions.

When the function is continuous and 

dierentiable it is easier to check by taking 

the derivative.
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Example 9 illustrates that composition of  functions is not always  

commutative, i.e. ( f  g)(x) ≠ ( g  f  )(x) for all f  (x), g (x).

Inverse functions

Let f  : S → T  be a bijection. Since it is a surjection, each element in T is  

the image of  some element in S. But f is also an injection, so every element  

in T is the image of  a unique element in S. We can therefore dene a new  

function from T to S that reverses the mapping from S to T as follows:

Denition

Let f  : S → T be a bijection from S to T. The inverse function of f, 

denoted by f  − : T → S, is a function such that f  f  − = I = f  −
 f

where I is the identity function.

Note that f has to be a bijection. If  f  is not injective then there is some  

element in T that is the image of  more than one element in S. Let us  

say that f  (x
i
) = y

i
 = f  (x

j 
). In this case we cannot assign a unique element  

in S such that f y xi =
1( )  since y

i
 is the image of  two elements in S. 

If  f is not surjective then there is some element y
i
∈ T for which there  

is no element in S such that f  (x) = y
i

Theorem 3

a A function f  : A → B is bijective ⇔ it has an inverse.

b A function f  : A → B is bijective ⇔ its inverse is also a bijection.

Proof:

a ⇒ : Let f  : A → B be a bijection. Then f  is injective and f  is surjective.

 Since f  is injective, f  (a) = f  (b) ⇒ a = b for all a, b ∈ A.

 Since f  is surjective, for every y ∈ B, there is an a ∈ A such that f  (a) = y.

 Taking these together we have:

 f is bijective ⇒ for every y ∈ B there is a unique a ∈ A such that f  (a) = y.

  If  we dene a mapping g : B → A, such that g ( f  (a)) = a for all f  (a) ∈ B,  

this is a well-dened function because every element in B may be written  

in the form f  (a) and its image a under g is a unique element of  A.

 Hence we have ( g  f  ) (a) = a ⇒ g is a left inverse of  f

 Also for all f  (a) ∈ B, f  ( g( f  (a)) = f  (a) ⇒ f  g ( f  (a)) = f  (a).

 Therefore g is also a right inverse of  f

 Since g is a left and right inverse of  f, we can say that f  has an inverse.

 ⇐ : Let g be the inverse of  f  and let us suppose that f   is not injective.

⇒ there are a, b ∈ A such that a ≠ b but f  (a) = f  (b).

⇒ a = g ( f  (a))

   = g ( f  (b)), since f  (a) = f  (b)

   = b
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 This is a contradiction since we started by saying that a ≠ b. 

 Therefore f must be injective.

 Let us now suppose that f  is not a surjection.

 Then there must be some element y ∈ B that is not the image of  any a ∈ A

 i.e. f  (a) ≠ y for all a ∈ A.

 On the other hand f  ( g (y)) = y by denition of  inverse.

  It follows that there must be an a ∈ A whose image under f  is y in B. 

This is a contradiction, therefore f is a surjection.

 Since f is both an injection and a surjection it follows that f  is a bijection.

b To show that f B A→
1
:  is a bijection we need to show that it is  

an injection and a surjection.

 Let x x B1 2, ∈  such that f x f x− −

=
1

1

1

2( ) ( )

 Then by the denition of  inverse we know that 
− −− −

== = == 
1 11 1

1 2 221 1( ( )( )( ) ( )( )) ( ( ))f f x f fx fxf f x f x x

 Therefore f − : B → A is injective.

  Since f  : A → B is a surjection we know that for each y ∈ B there is  

x ∈ A such that f  (x) = y

  ⇒ f  −
 f  (x) = x = f  −( y) 

  Therefore since for all x ∈ A there is y ∈ B such that f  −( y) = x it  

follows that f  − : B → A is a surjection.

 Since f  − : B → A is injective and surjective, it follows that it is a bijection.

Example 

Determine whether f  is an injection, and/or a surjection and nd the inverse  

function f  − where applicable:

a f  :R → R+ ∪ {0} and f  (x) = x  2

b f  :R+ → R+ and f  (x) = x  2 + 

c f  :R → R and f  (x) = x  3 + 

a Method I

 Let f  (x

) = f  (x

2
)

⇒ =x x
1

2

2

2

⇒ x


= ± x
2

 Therefore f is not an injection.

Method II

f x x f x x( ) ( )= ⇒ ′ =
2 2

⇒ ′  f x x( ) 0 0 when 

′ = =f x x( ) 0 0when

and  when′ > >f x x( ) 0 0

⇒ is not continuously increasing or decreasing over R



Chapter 2 63

 Therefore f is not an injection.

 For every y ∈R+ there is x ∈R such that x2 = y

 Therefore f is a surjection.

 Since f is not a bijection it does not have an inverse.

b Let f  (x

) = f  (x

2
) 

⇒ + = +x x
1

2

2

2
1 1

⇒ x


= x
2

 Therefore f is an injection.

 Let y y∈ <
+

 , 1

 There is no x ∈ R + such that f  (x) = y. 

 Therefore f is not a surjection.

 Since f is not a bijection it does not have an inverse.

c Let f  (x

) = f  (x

2
)

⇒ + = +x x
1

3

2

3
1 1

⇒ x


= x
2

 Therefore f is an injection.

 For every y ∈ R, − ∈
3 1y  ( )⇒ − =3 1f y y

 So f is a surjection.

 The inverse function is given by  −
1 3( ) 1f x x

f  (x) > 0 for all x ∈R+

Use contrapositive statement for 

injection.

Use denition of  surjection.

As mentioned previously, functions are not restricted to having the  

domain or co-domain as subsets of  R. In Example 7 the domain and  

co-domain were the set of  polynomial functions with real coecients.  

In the next examples you will see work on functions that have a  

Cartesian product as domain and co-domain.

Example 

Given f  : R × R → R × R such that f  (x, y) = ( y – 2x, x + y),

a show that f  is a bijection

b nd f  – (x, y).

a Let f  (x, y) = f  (a, b)

⇒ ( y – 2x, x + y) = (b – 2a, a + b)

⇒ y – 2x = b – 2a

 and y + x = b + a

⇒ –3x = –3a

⇒ x = a

 Since y + x = b + a then y = b

 Therefore f is injective.

First show that f  is an injection.

Equate corresponding elements.

Subtract the second equation 

from the rst.

Show that (x, y) = (a, b)
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Let (a, b) ∈R × R

If  f (x, y) = (a, b), (y – 2x, y + x) = (a, b)

⇒ y – 2x = a and y + x = b

⇒ –3x = a – b

⇒ x
b a

= ∈

3


y + x = b

⇒ y = b – x

⇒ = −y b
b a

3

⇒ = ∈
+

y
b a2

3


Therefore (x, y) ∈R × R

So f  is a surjection, and therefore f  is a bijection.

b Let (a, b) = f (x, y) 

⇒ (a, b) = (y – 2x, y + x)

⇒ = −

= +
⇒ = =

⎫
⎬
⎭

− +a y x

b y x
x y

b a b a2

3

2

3
,

Therefore 
− +⎛ ⎞

⎜ ⎟
⎝ ⎠

=1 2

3 3
( , ) ,

y x y x
f x y

Now show that f  is a surjection.

Equate corresponding elements.

Subtract second equation from 

the rst.

Substitute for x

Replace a and b by x and y 

respectively to write the inverse 

function.

You need to write the inverse 

function using f −1(x, y).

Example 

Given that 
g g x y x y x y

h h x y xy x y

: , ( , ) ( , )

: , ( , ) ( , )

 

 

2 2

2 2

2

2

→ = − +

→ = −

a Show that g has an inverse and nd it.

b Determine whether ( g o h) is a bijection.

a For g to have an inverse it has to be a bijection.

Let g (x, y) = g (a, b) 

(x − y, 2x + y) = (a − b, 2a + b)

⇒ x − y = a − b

and 2x + y = 2a + b

⇒ 3x = 3a ⇒ x = a

x − y = a − b ⇒ y = b

Therefore g is an injection.

Let (a, b) ∈R2

If f (x, y) = (a, b) then

(x − y, 2x + y) = (a, b)

Equate elements of  ordered pairs.

Add the equations.

Show that (x, y) = (a, b).
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⇒ x − y = a

and 2x + y = b
} ⇒ x = 

a + b

3
∈R and y = b – 2a

3
∈R

Therefore g is a surjection.

Since g is bijective it has an inverse.

Let (a, b) = g (x, y)

Then (a, b) = (x − y, 2x + y)

⇒ = −

= +
⇒ = =

⎫
⎬
⎭

+ −a x y

b x y
x y

a b b a

and 2 3

2

3
,

g x y
x y y x

=
+ −⎛

⎝
⎜

1

3

2

3
( , ) ,

b ( ) ( , ) ( ( , )) ( , )

( , )

g h x y g h x y g xy x y

xy x y xy x y

 = = −

= − + + −

2

2 2 2

Let (g o h)(x, y) = (g o h)(a, b)

⇒ (xy − 2x + y, 2xy + 2x − y) = (ab − 2a + b, 2ab + 2a − b)

⇒ − + = − +

+ − = + −

⎫
⎬
⎭

=
xy x y ab a b

xy x y ab a b
xy ab

2 2

2 2 2 2

xy ab x
ab

y
= ⇒ = , y ≠ 0

⇒ + =
2ab

y
− +2a b

⇒ − + = − +2 2
2ab y ay by

⇒ + − − =y a b y ab2 2 2 0( )

⇒ =
− − ± − +

y
a b a b ab( ) ( )2 2 8

2

2

⇒ =
− − ± − + +

y
a b a ab b ab( )2 4 4 8

2

2 2

⇒ =
− − ± +

y
a b a b( ) ( )2 2

2

2

⇒ y = b or y = –2a

When y = b, x = a and when = − =

2
2 ,

b
y a x

We have (g o h)(x, y) = (g o h)(a, b)

⇒ ( g o h)(2, 6) = (g o h)(−3, −4) 

( g o h) is not injective therefore it is not a bijection.

Equate elements of  ordered pairs 

and add to solve for x and y.

Equate elements of  ordered pairs 

and add to solve for x and y.

Again we need to write it out 

using inverse notation.

Equate elements of  ordered pairs 

and add to write x in terms of  a, 

b and y

Substitute for x in the rst 

equation.

Solve the quadratic equation for y.

It is sucient to nd two dierent 

elements that have the same 

image.

e.g. a = 2, b = 6
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2.2 Properties of functions

We will now consider some properties of  functions by looking at the  

three functions:

f  : R → R, f  (x) = 3x + 2

+

→ = 
2

: , ( ) ex
g g x

h h x
x

: , ( ) 
+ +

→ =
1

First we nd f  ( g  h)(x) as follows

f g h x f g h x f g f g
x x

   ( )( ) ( ( ))= = =
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

1 1

( ) ( )
2

2 2

1

e e 3e 2
xx xf f

− −
⎛ ⎞
⎜ ⎟
⎝ ⎠= = = +

Now let us compute ( f  g)  h (x).

= = = +
2 2

( )( ) ( ( )) (e ) 3e 2x xf g x f g x f

⎛ ⎞
⎜ ⎟
⎝ ⎠⎛ ⎞

⎜ ⎟
⎝ ⎠

⇒ = = + = +  

2

2

1
1

( ) ( ) ( ) 3e 2 3e 2x x

x
f g h x f g

Therefore for the given functions we have shown that  

(( f  g)  h)(x) = ( f  ( g  h))(x).

In the next theorem we will prove that this result is true for any three  

well-dened functions.

Theorem 4

Composition of  functions is associative; in other words,

given three functions f  : C → D, g : B → C and h : A → B, it follows 

that (( f  g)  h)(x) = ( f  ( g  h))(x).

Proof:

LHS = (( f  g)  h)(x) = ( f  g) (h (x)) = f  ( g (h (x)) 

RHS = ( f  ( g  h))(x) = f  (( g  h)(x)) = f  ( g (h (x)) 

The domains and co-domains of  (( f  g)  h) and ( f  ( g  h)) are the  

same and since (( f  g)  h)(x) = ( f  ( g  h))(x) for all x ∈ A, it follows  

that (( f  g)  h) = ( f  ( g  h)). Q. E. D.
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Investigation

Before we look at the next properties you should justify whether the following 

statements are true or false. A formal proof  is not necessary at this stage and  

you may use diagrams to help you decide on an answer.

f A B g B C: :→ → and 

a i  Given that both  f  and g are injective functions then g  f  is also injective.

ii  Given that both  f  and g are injective functions then  f  g is also injective.

iii If  g  f  is injective and g is also injective then  f  is injective.

iv If  g  f   is injective and f  is also injective then g is injective.

b i  Given that both  f  and g are surjective functions then g  f  is also surjective.

ii  Given that both  f  and g are surjective functions then  f  g is also surjective.

c If  f  is injective and g is surjective then:

i g  f  is injective

ii g  f  is surjective.

d If  f  is surjective and g is injective then 

i g  f  is injective

ii g  f  is surjective.

Theorem 5

a If  f  :  A → B and g : B → C are injective functions then 

 g  f  :  A → C is also injective.

b If  f  :  A → B and g : B → C are surjective functions then 

g  f  :  A → C is also surjective.

c If  f  :  A → B and g : B → C are bijections then 

g  f  :  A → C is also a bijection.

Proof:

a Let ( g  f  )(x

) = ( g  f  )(x

2
) 

⇒ g (  f  (x

)) = g( f  (x

2
)) 

⇒ f  (x

) = f  (x

2
) since g is injective

⇒ x

 = x

2
since f  is injective

 Therefore ( g  f  ) is also injective.

b Let q ∈ C, then, since g is surjective, there is some y ∈ B such that g (  y) = q

 For this y there is some x ∈ A such that f  (x) = y since f is surjective.

 So q = g (  y) = g (  f  (x)) = ( g  f  )(x)

 Therefore ( g  f  )is also surjective.

c  Since it was shown in a and b that ( g  f  ) is both injective and surjective,  

then by denition of  bijection it follows that if  f and g are both bijective  

then ( g  f  ) is a bijection. Q.E.D.
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Properties of composite functions

 Associative f g h x f g h x   ( )( ) = ( )( )( ) ( )

 If f S T g T S: :→ → and are injections, then 

f g x g f x ( ) ( )( ) ( ) and  are injective.

 If  f S T g T S: :→ → and  are surjections, then 

f g x g f x ( ) ( )( ) ( ) and  are surjective.

Exercise 2B

1 A and B are two non-empty sets, and A, B ⊂ R. The functions f  and g are  

dened as follows: f : A × B → B × A, f (a, b) = (b, a) and g : B × A → B,  

g (b, a) = b. Find g o f

2 Explain why the function f :R → R, f (x) = 2x − x2 is neither injective  

nor surjective.

3 Given that f :R → R+, f (x) = e2x and g :R+
 → R, g (x) = lnx, nd:

a i ( f  o g) (x)

ii ( g o f ) (x)

b Check each of  the composite functions in a for injection  

and surjection.

4 Two functions f  and g are dened as follows:  

f :Z → Z × Z, f (n) = (n − 1, 1) and  

g :Z × Z → Z, g (m, n) = m + n

a Show that f is a bijection and nd its inverse.

b Show that g is not a bijection, but a surjection.

c Find f o g and g o f

5 Consider the two functions f :R × R → R × R such that  

f (x, y) = (xy, x + y).

a Determine whether or not f is a bijection.

b Find ( f o f )(x, y).

6 Let f :R\ {0, 1} → R\ {0, 1} such that f x
x

( ) =

1
 and 

g :R\ {0, 1} → R\ {0, 1} such that g (x) = 1 − x

a Show that f  and g are both bijections.

b Find f o g and g o f

c Show that ( f o g) o ( g o f )(x) = (g o f ) o ( f o g)(x).

d What can you say about f and g ?

e What can you say about f o g and g o f ?
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7 The function f : (R+)2 → (R+)2 is dened by f x y x y
y

x
( , ) ,=

⎛

⎝
⎜

2

a Show that f is a bijection.

b Find the inverse f −1

8 The function ∞ → ∞: [0, [ [1, [f  is dened by f (x) = 4e2x − 3.

a Find f ′(x) and hence show that f  is a bijection.

b Find an expression for f −1(x).

9 The function f :R → R is dened by

f x
x

x x

x

( )

ln

=
≤

>

⎧

⎨
⎪

⎩⎪
e

e

e

for 

      for 

a Sketch the graph of  f

b By referring to your graph, show that f is a bijection.

c Find f −1

10 Three functions mapping Z × Z → Z are dened by

f

(m, n) = m − n − ,  f

2
(m, n) = |n| and  f

3
(m, n) = m2 − n2

Two functions mapping Z → Z × Z are dened by

g

( p) = (2p + , p) and g

2
( p) = (|p|, p).

a Find the range of

i f
1
o g

1

ii f
3
o g

2

b Find all the solutions of  f
1
o g

2
( p) = f

2
o g

1
( p).

c Find all the solutions of  f
3
(m, n) = k in each of  the cases  

k = 1 and k = 2.

11 Consider the functions  

f :Z → Z where 
⎧
⎪
⎨
⎪⎩

=
       if   is even

2

if  is odd

( )

+ 1    

n
n

n

f n

n

g :Z → Z where g (n) = 6 − n

h :Z → Z where h (n) = n(mod 8)

k :Z → Z where k (n) = |n − 8|

Find:

a ( h o g )(n) b ( k o f )(n) c  ( f o g )(n)

d ( f o h o g )(n) e ( k o h o g )(n) f ( k o f  o g )(n)

12 Given that f : [1, ∞[ → R, f (x) = ln(2x − 1), +

→ =

2

: , ( ) ex
g g x   and  

h :R → R, h (x) = 2x, nd the following functions:

a ( g o f )(x) b ( f o g)(x) c (h o f )(x) 

d ( g o h o f )(x) e (h o g o f )(x) 
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Identity functions

In this section we will be focusing on identity functions. An identity  

function is one whose output is the same as the original input. 

Denition

The identity function for a set S is a bijection I
S
: S → S such that 

I
S
(x) = x for all x ∈ S

Theorem 6

Let f : S → S be any function.  

Then (I
S
o f )(x) = ( f o I

S
)(x) = f (x) for all x ∈ S.

Proof:

Let x ∈ S.  

Then (I
S
o f )(x) = I

S
( f (x)) = f (x) and ( f o I

S
)(x) = f (I

S
(x)) = f (x).

Therefore (I
S
o f )(x) = ( f o I

S
)(x) = f (x). Q.E.D.

Theorem 7

For a bijection f : S → T such that f (x) = y, x ∈ S and y ∈ T, the 

inverse function f − : T → S is such that ( f − 
o f )(x) = I

S
 and  

( f o f −)( y) = I
T

Proof:

( f −
o f  )(x) = f −( f (x)) = f  −( y) = x = I

S

Notice that one composition 

gives an identity on the 

domain and the other one 

gives an identity on the  

co-domain.

( f o f −)( y) = f ( f −( y)) = f (x) = y = I
T 

Q.E.D.

Example 

Show that if  f : B → C and g : A → B are both bijections then ( f o g)−(x) = (g−
o f −)(x).

( f o g) o ( g−
o f −)(x)

= ( f o ( g o g−) o f −)(x)

= ( f o (I
B

o f −))(x)

= ( f o f −)(x) = I
C

Similarly

( g−
o f −) o ( f o g)(x)

= (g− ( f −
o f ) o g)(x)

= (g− (I
B

o g))(x)

= (g−
o g)(x) = I

A

Composition of  functions is 

associative.
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Example 

Given that f : \{ } 0 →
+ such that 

− +
=

4 | | | |

2
( )

x x x x

x
f x , 

show that f (x) is a bijection.

When x > 0, |x| = x and f x x
x x x

x
( ) = =

− +4

2

2

2

So f (x

) = f (x

2
) ⇒ x


 = x

2

When x < 0, |x| = –x and f x x
x x

x
( ) = = − −

− −4 2

2

2

2 1

and f (x

) = f (x

2
) ⇒ x


 = x

2

Moreover, if  x < 0 then f (x) is even, while if  x > 0 

then f (x) is odd. So if  x
 
> 0 and x

2 
< 0 then  

f (x

) ≠ f (x

2
). Therefore f (x) is an injection.

f (Z+) = {2, 4, 6, . . .}

f (Z ) = {, 3, 5, . . .} 

f (Z) = {2, 4, 6, . . .} ∪ {, 3, 5, . . .} = Z

Therefore f (x) is a surjection.

Since the function is both an injection and a surjection 

it follows that it is a bijection.

Show that f  is both injective and 

surjective.

Although R and R+ have the same cardinality and are both innite they are  

uncountable, unlike ℕ, ℚ and Z, which are countably innite.

Cantor came up with an ingenious yet very simple method to show 

that the rational numbers are countable. A set is said to be 

countable if a one-to-one correspondence can be found between 

the elements of the set and the set of positive integers. Cantor 

constructed a table that enables all the rational numbers, both 

positive and negative, to be included and hence allows a one-to-one 

correspondence to be found. The table is on the right, with 

the lines showing the order of pairing up the fractions with the 

1/6 –1/6

2/5 –2/5

2/6 –2/6

...

...

...

...

...

...

...

...

...

...

...

3/3 –3/3

3/4 –3/4

3/5 –3/5

3/6 –3/6

positive integers.

Having understood what we mean by a bijection it should be clear that  

if we have a bijection f :S → T where S and T are nite sets it follows that 

n (S ) = n (T ).

What if g :R → R+ such that g(x) = 2x? You have shown in Exercise 2B that 

this is a bijection. In this case we say that the two sets R and R+ have the 

same cardinality because there is a bijection g :R → R
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Exercise 2C

1 For each of  the following questions nd ( f o g)(x) and (g o f )(x)  

and determine whether f and g are mutual inverses.

a f f x x

g g x
x

: , ( )

: , ( )

 

 

→ = −

→ = −

1 3

1
3

b → − = −
1

{ } { }: \ 0 \ 4 , ( ) 4
x

f f x 

+

− → =
1

{ } { }
4

: \ 4 \ 0 , ( )
x

g g x 

c
+

→ = − ∈  
3: , ( ) 1,f f x kx k

g g x x
k

: , ( ) ( ) → = +
1 3 1

2 Show that the following functions are bijective and describe the  

respective inverse functions:

a f :R+ → R, f (x) = lnx

b f f x
x x

x x
: , ( ) → =

⎧
⎨
⎩

 if  is rational

 if  is irrational

3 a Given that f :R → R, f (x) = ex and  

g:[0, π] → [−1, +1], g (x) = cos x nd:

i ( f o g) −1(x)

ii ( g −1
o f −1)(x)

b Prove that for invertible functions f  and g, ( f o g)−1 = g−1
o f −1

2.3 Binary operations

You are familiar with the operations of  addition and multiplication  

of  numbers, the dot product of  two vectors, the union and intersection  

of  sets and earlier in this chapter we looked at the composition of   

functions. All of  these are operations. Other operations you are  

familiar with include: 

n! factorial

|z| modulus

A′ the complement of  set A

There is a dierence between n! and the product of  two numbers.

In order to nd n! we need to know only the value of  n. So when  

n = 4, 4! = 24. We call these unary operations (operations that have  

only one input). However, in order to perform multiplication we  

need two numbers. We need two sets to nd a union or intersection  

but we only need set A to identify its complement.

If a function is 

invertible it means 

that it has an inverse.
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Denition

A binary operation ∗ on a non-empty set S is a rule for combining

any two elements x, y ∈ S to give a unique element c of  a set. This 

is denoted by x ∗ y = c.

In this book we mostly 

use * to denote binary 

operations. However, 

we sometimes also 

use other notations, 

for example:

o, ⊗  # , …
Division on R is not a binary operation because x ÷ 0 is not dened.

However division on  \{ }0  is a binary operation.

Multiplication on Z produces another integer. The dot product of  two  

vectors is not a closed binary operation since it produces a scalar quantity.

The vector product however is a closed binary operation since it produces  

another vector.

Consider a set S with binary operation ∗. We say that S is closed

under ∗ if  for every x, y ∈ S, x ∗ y ∈ S

The set of  vectors, V, is closed under the vector product because for  

all (a, b) ∈ V, a × b = c ∈ V.

The set of  real numbers, R, is closed under multiplication because  

for all x, y ∈R, xy ∈R

When testing for closure on nite sets it is useful to illustrate the  

operation using a Cayley table. This is a square grid which shows  

all the possible elements obtained by the binary operation. We can  

represent the operation ∗ on the set A = {a, b, c , d} as follows:

A × A a b c d

a a ∗ a a∗ b a∗ c a∗ d

b b ∗ a b∗ b b∗ c b∗ d

c c ∗ a c∗ b c∗ c c∗ d

d d ∗ a d∗ b d∗ c d∗ d

Note that order is important when lling out a Cayley table. The element in 

the third row and second column above is c∗b and not b∗c.

Consider the binary operation multiplication on the set S = {−, 0, }.  

The operation table is shown below.

We can see from the Cayley table that every 

product is a member of  S

We can therefore say that S is closed under 

multiplication.

S × S − 0 

−  0 −

0 0 0 0

 − 0 

Arthur Cayley (1821–1895) was 

the rst mathematician to dene 

the concept of a group (which 

you will rst study in Chapter 3) 

as a set together with a binary 

operation that satises certain 

conditions.
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Example 

Determine which of  the following operations are binary operations on the given sets and 

for those which are, state whether or not they are closed.

a Addition on the set S = {−, 0, }

b Multiplication on the set of  complex numbers ℂ

c Addition on the set { }+= = ∈| 2 ,A x x n n

d Multiplication on the set { }+= = + ∈| 2 1,B x x n n

e Division on the set of  rational numbers ℚ

a
+ − 0 

− −2 − 0

0 − 0 

 0  2

It is a binary operation since each addition gives a unique 

element. Not closed, since –2, 2 ∉S

b It is a binary operation which is closed.

(a + ib)(c + id ) = (ac − bd ) + i(bc + ad ) ∈ℂ

c It is a binary operation which is closed on the set of  positive 

even integers. 2m + 2n = 2(m + n), which belongs to A since  

(m + n) is an element of  Z+

d It is a binary operation which is closed on the positive odd integers.

(2n + )(2m + ) = 2(2mn + m + n) +  = 2k +  ∈B

e It is not a binary operation since 0 ∈ℚ , and division by 0 is 

not dened

Check whether it is a  

binary operation and for 

closure.

Example 

The operations ∗ and o on the set S = {, 2, 3} are dened as follows:
− +

∗ = − =
| 2 |

2
andb a a b a

a b a b a b

Draw a Cayley table for each operation and determine whether the set is closed  

under these operations.

∗  2 3

 0 − −2

2  0 −

3 2  0

The set is not closed under ∗ since −2 and − are not in S.

o 0  2 3

0 0  2 3

   2 3

2 2  2 3

3 3 2 2 3

The set is closed under o

Fill out the table by working out the 

operation, e.g. 2 ∗ 1 = 21 − 12 = 1.

Work out the operations to ll out 

the table, e.g. 

3 2 2
3 4 3

2
 = =

⏐ ⏐ +
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Exercise 2D

1 Determine which of  the following operations are binary operations  

on the given sets and for those which are, state if  they are closed.

a ∗ on S = {0, 1, 2, 3}, where a ∗ b = a + b

b ∗ on Z+, where a ∗ b = the smaller of  a or b, or the common value if  a = b

c ∗ on Z+, where a ∗ b = (ab + 1)

d o on Z+, where a o b = b a

2 Let S = {z|z = a + bi, where a b b i, , ,∈ ≠ = − } 0 1 . Show that  

the following operations are binary operations on S and determine  

whether or not they are closed. 

a addition b multiplication c division

3 Determine whether or not the following sets are closed under 

a addition

b multiplication

i { }+= = ∈| 2 ,A m m n n ii { }+= = − ∈| 2 1,B m m n n

4 The operations ∗ and o on the set S = {0, 1, 2, 3} are dened  

as follows: a ∗ b = a + b (mod4) and a o b = ab (mod4).

Draw a Cayley table for each operation and determine whether  

or not the set is closed under these operations.

5 Let X = { f | f :R → R, f is a function}. Show that the  

following operations are binary operations on X and determine  

whether or not they are closed. 

a addition of  functions b subtraction of  functions

c composition of  functions

6 Let S = {−1, 1, i, −i } where i = −1. Draw a Cayley table to  

show that S is closed under multiplication.

7 The binary operation ∗ is dened for a, b ∈Z+ by a ∗ b = 2a + b + ab.  

Show that ∗ is a binary operation and determine whether or not Z+ is  

closed under ∗

8 The operations ∗ and o on the set S = {1, 2, 3} are dened as follows:

a b a b ab a b
b a a b

ab
∗ = − + =and 

! !

Draw a Cayley table for each operation and determine  

whether or not the set is closed under these operations.

9 Let { }+= ∈ 
2
|S n n . Determine whether or not S is closed under

a addition b multiplication.

10 Let S = {1, 2}. The binary operation ∗ is dened on S as follows.  

For a, b ∈ S, a ∗ b = 3ab and the binary operation o is dened on  

S × S is dened as (x
1
, y

1
) o (x

2
, y

2
) = (x

1
∗ x

2
, y

1
∗ y

2
).

a Write the elements of  S × S

b Construct the Cayley table for the operation ∗ on S. Is S closed under ∗?

c Construct the Cayley table for the operation o on S × S
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Properties of binary operations

Denition

A binary operation ∗ on a non-empty set S is said to be 

associative if  for all a, b, c ∈ S, a ∗ (b ∗ c) = (a ∗ b) ∗ c

The operation addition on R is associative but subtraction is not  

since (6 − 2) − 3 =  and 6 − (2 − 3) = 7

Also the operation multiplication on R is associative but division  

on R\{0} is not associative because 8 ÷ (2 ÷ 3) ≠ (8 ÷ 2) ÷ 3.

Denition

A binary operation ∗ on a non-empty set S is said to be 

commutative if  for all a, b ∈ S, a ∗ b = b ∗ a

Addition and multiplication are commutative on R but the operation 

division on R \{0} is not commutative because it is not the case that 

a ÷ b = b ÷ a, for all a, b ∈ R\{0}

Also the operation subtraction on R is not commutative since it is  

not the case that a − b ≠ b − a, for all a, b ∈ R\{0}

Example 

The binary operation o on ℂ is dened as follows z o w = |z + w|. Determine whether o is:

a commutative b associative.

a = + = +

⇒ + = + + +
2 2

,

| | ( ) ( )

z a ib w c id

z w a c b d

= |w + z|

z o w = |z + w|

w o z = |w + z| = |z + w|

The operation is commutative.

b Method I

(−) o ((−) o ) = (−) o 0 = , but ((−) o (−) o  = 2 o  = 3

Method II

( )+ + = + + + + +
2 2| | || ( ) ( )z w v a c e d f ib

( )+ + = + + + + +
2 2|| | | ( ) ( )z w v a c b d e if

+ + ≠ + +| | || || | |z w v z w v

z o (w o v) = z o (|w + v|) ≠ (|z + w|) o v

The operation is not associative.

Check whether  

z o w = w o z

Check whether  

z o (w o v) = (z o w) o v

Denition

Given two binary operations ∗ and o on a set S, ∗ is said to be 

distributive over o if  a b c a b a c∗ = ∗ ∗( ) ( ) ( )   and 

( ) ( ) ( )a b c a c b c ∗ = ∗ ∗  for all a b c S, , ∈
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The following example illustrates this property.

Example 

Given the operations ∗ and o on Z, such that a b ab∗ = 3  and a b a b = + 3 , 

determine whether:

a ∗ is distributive over o b o is distributive over ∗

a a b c a b c a b c ab ac∗ = ∗ + = + = +( ) ( ) ( ) 3 3 3 3 9

(a ∗ b) o (a ∗ c) = (3ab) o (3ac) = 3ab + 3(3ac)

= 3ab + 9ac

Therefore ∗ is distributive over o

b a b c a bc a bc ( ) ( )∗ = = +3 9

(a o b) ∗ (a o c) = (a + 3b) ∗ (a + 3c)

= 3(a + 3b) (a + 3c)

a o (b ∗ c) ≠ (a o b) ∗ (a o c)

For example, 5 o (5 ∗ 5) = 5 o 75 = 230, but  

(5 o 5) ∗ (5 o 5) = 200. 

Therefore o is not distributive over ∗

Check if  ∗ is distributive over o

Check if  is o is distributive over ∗

Exercise 2E

1 For the binary operations dened below determine whether ∗ is 

i commutative ii associative

a ∗ is dened on Z by a b a b∗ = −

b ∗ is dened on ℚ by a b ab∗ = +2 1

c ∗ is dened on ℕ by a b
a b

∗ = 2 3

2 ∗ is a commutative and associative binary operation on a set S

Show that ( ) ( ) ( )a b c d d c a b∗ ∗ ∗ = ∗ ∗( ) ∗

3 Let 
1 2 3 4, , andf f f f  be functions dened on R\{0} such that f


(x) = x, 

f x
x

2

1
( ) = , f

3
 (x) = –x and f x

x
4

1
( ) =  . The binary operation o on

S = {f

, f

2
, f

3
, f

4
} is dened as the composition of  functions.

Draw a Cayley table to illustrate this operation. Determine whether 

a S is closed under composition of  functions

b the operation composition of  functions is commutative in S

4 The binary operation ∗ is dened on R such that for all  

a b a b a b, ,∈ ∗ = + − 2 1. Determine whether the binary  

operation ∗ is

a commutative b associative.

5 The operation ∗ is dened on R\{1} by a b ab a b∗ = − − + 2 for  

all a b, ∈R\{1}. Show that:

a R\{1} is closed under the operation ∗

b the operation ∗ is commutative

c the operation ∗ is associative.
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The identity element e

Denition

Let ∗ be a binary operation on S. If  there is an element e S∈  such 

that for every element x S∈ , e x x x e∗ = = ∗ , then we say that e

is the identity element of  S under the operation ∗

Theorem 8

The identity element of  a binary operation ∗ on S is unique.

Proof:

Let e f S e f, ,∈ ≠  such that for every element x S∈ :

e x x x e∗ = = ∗ and f x x x f∗ = = ∗

e x x x e e f f f e∗ = = ∗ ⇒ ∗ = = ∗ (replacing x by f  since f S∈ )

∗ = = ∗ ⇒ ∗ = = ∗f x x x f f e e e f  (replacing x by e since e S∈ )

Combining the two we obtain the result that e = f and so the identity is unique.  Q.E.D.

In general we could say that an element e ∈ S is the left identity if  

for every x ∈ S, e ∗ x = x, and f ∈S is the right identity if  for every 

x ∈S, x = x ∗ f. We can show that e = f as follows. (i.e. if  there is a 

left identity and there is also a right identity, then they are equal.)

Since e is a left identity we know that e ∗ x = x

But since f ∈S we can replace x by f  to obtain e ∗ f = f

But f is a right identity so e ∗ f = e

Therefore e = f

Example 

Let the binary operation ∗ be dened on set of  numbers S such that for a b S a b
ab

, ,∈ ∗ =

2
Determine whether or not an identity exists and if  it does, nd it.

Suppose an identity exists, i.e. e b b∗ =  for b S∈

e b b e b
eb

∗ = ∗ =and
2

Therefore b e
eb

= ⇒ =

2
2

b e b b e
be

∗ = ∗ =and
2

= ⇒ =

2
2

be
b e

Since the left identity is equal to the right identity the 

identity exists and e = 2.

First we nd the left identity.

Now we nd the right identity.
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Example 

Let the binary operation ∗ be dened on + such that for a b S a b a b, ,∈ ∗ = +2 3

Determine whether or not an identity exists and if  it does, nd it.

Suppose an identity exists, i.e. e b b∗ =  for b S∈

e ∗ b = b and e ∗ b = 2e + 3b

 ⇒ b = 2e + 3b

 ⇒ e = –b

We can show that the right identity is not equal to  

the left identity as follows:

b ∗ e = b and b ∗ e = 2b + 3e

⇒ b = 2b + 3e

⇒ = −e
b

3

Since the left identity is not equal to the right identity and 

neither left identity nor right identity are elements of  + it 

follows that the operation does not have an identity in S

First look for the left identity.

Exercise 2F

In Questions  to 5 below, determine whether the binary operation ∗ is:

a commutative

b associative

Determine whether or not an identity element exists and if  it does, nd it.

1 The binary operation ∗ is dened on Q such that for all a, b ∈ Q,

a ∗ b = a + b − ab

2 The binary operation ∗ is dened on N × N such that for all  

(m, n), ( p, q) ∈N × N, (m, n) ∗ ( p, q) = (mp, nq).

3 The binary operation ∗ is dened on N × N such that for all  

(m, n), ( p, q) ∈N × N, (m, n) ∗ ( p, q) = (m + p, n + q).

4 The binary operation ∗ is dened on Q × Q such that for all  

(a, b), (c, d ) ∈ Q × Q, (a, b) ∗ (c, d ) = (ac, ad + b).

5 The binary operation ∗ is dened on + × + such that for all  

(m, n), ( p, q) ∈ + × +, (m, n) ∗ ( p, q) = (mq + np, nq).

The inverse of an element

Denition

Let ∗ be a binary operation on S with identity e. Then for all  

x ∈S if  there exists an element y ∈S such that x ∗ y = e = y ∗ x

then we call y the inverse of  x, and we write y = x −
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It is easy to understand this concept with some operations that you are  

familiar with. The identity of  addition in R is 0 because x + 0 = x = 0 + x

for all x ∈R. Since −x ∈R and x + (−x) = (−x) + x = 0 we conclude  

that for addition in R, e = 0 and x − = −x

Similarly for multiplication in R\{0}, the identity e =   

since  × x = x = x ×  and the inverse is given by x
x

=
1 1

 since  

x x

x x

× = × =
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

1 1
1

Note that x−1 here is 

the notation for inverse, 

not the reciprocal 

notation for numbers, 

which happens to be 

the same.

Theorem 9

For an associative binary operation ∗ in S with identity e, the 

inverse is unique.

Proof:

Let a, b be inverses of  x

a = e ∗ a by denition of  identity

   = (b ∗ x) ∗ a since b is an inverse of  x

   = b ∗ (x ∗ a) by associativity

   = b ∗ e since a is an inverse of  x

   = b by denition of  identity Q.E.D.

You should remember 

that you cannot discuss 

an inverse without  

rst establishing that 

an identity exists. We 

also need to assume 

the associativity 

property but not 

commutativity

Example 

For multiplication in ℂ\{0} determine whether or not the identity element exists  

and if  it does nd the inverse of  z ∈ℂ\{0}.

We know that for z ∈ℂ\{0},  × z = z ×  = z ⇒ e =  + 0i.

For z ∈ℂ\{0}, z z

z z

× = × =
1 1

1

z = a + bi

2 2

1 1 a bi z

z a bi a b zz

∗

∗

+ +

⇒ = = =

Therefore the inverse 1 z

z

∗

∗
=

Establish whether there is 

an identity.

Find the inverse.
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Example 

Let ∗ be a binary operation on ℚ × (ℚ\{0}) such that (a, b) ∗ (c, d ) = (a + c, bd ). 

a Show that the operation is

i associative ii commutative.

b Show that the identity exists and nd the inverse (a, b)–1 under ∗ in ℚ × (ℚ\{0}).

a i Associativity:

(a, b) ∗ ((c, d ) ∗ (m, n)) = ((a, b) ∗ (c, d )) ∗ (m, n) 

LHS

= ( , ) ( , ) ( , )a b c d m n∗ ∗( )
= (a, b) ∗ (c + m, dn) 

= (a + (c + m), b(dn))

= ((a + c) + m, (bd )n)

= ((a + c), bd ) ∗ (m, n)

= ((a, b) ∗ (c, d )) ∗ (m, n) = RHS

Therefore ∗ is associative in ℚ × (ℚ\{0}). 

ii Commutativity:

(a, b) ∗ (c, d ) = (a + c, bd ) 

= (c + a, db)

= (c, d ) ∗ (a, b)

Therefore ∗ is commutative in ℚ × (ℚ\{0}). 

b Since we have shown that ∗ is commutative there is no need to 

nd both left and right identities since they will be equal.

Let (x, y) ∈ℚ × (ℚ\{0}) such that (x, y) ∗ (a, b) = (a, b)

⇒ (x + a, yb) = (a, b) ⇒ x + a = a ⇒ x = 0 and yb = b ⇒ y = 

So the identity is (0, ).

Let (m, n) ∈ℚ × (ℚ\{0}) such that (m, n) ∗ (a, b) = (0, ). 

(m + a, nb) = (0, )

⇒ = − =m a n
b

,
1

Therefore (a, b)– = 
⎛

⎝
⎜ ⎟a

b
,

1

When checking the 

properties you should  

rst dene them and  

then prove that the  

RHS = LHS.

The cancellation laws

The cancellation laws are very important in abstract algebra and will  

be used extensively in the next chapters.

Theorem 10

Let ∗ be an invertible associative binary operation on a non-empty 

set S with identity e. Then the operation satises 

i the left cancelation law, i.e. a ∗ b = a ∗ c ⇒ b = c

ii the right cancelation law, i.e. if  a ∗ b = c ∗ b ⇒ a = c

An invertible binary 

operation on S is 

one where for every 

x element of S, there 

exits an inverse also 

in S
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Proof:

Let a ∗ b = a ∗ c, where a, b, c ∈ S.

a−
 ∗ (a ∗ b) = a−

 ∗ (a ∗ c), since a has a unique inverse in S

⇒ (a−
 ∗ a) ∗ b = (a−

 ∗ a) ∗ c, since the operation is associative 

⇒ e ∗ b = e ∗ c by denition of  the inverse element

⇒ b = c  by denition of  the identity element Q.E.D.

The proof  of  the right cancellation law is left as an exercise.

Example 

Show that both right and left cancellation laws are satised for the composition  

of  bijective functions.

Let f, g, h be bijections. We need to show that

a if  f  g = f  h then g = h

b if  f  g = h  g then f = h

Since f  is a bijection it is invertible, i.e. there exists  

a bijection f  − such that f  f − = I = f  −
 f

f  g = f  h

⇒ f  −
 ( f  g) = f  −

 ( f  h) 

⇒ ( f −
 f  )  g = ( f −

 f  )  h

⇒ I  g = I  h

⇒ g = h

Therefore the left cancellation law holds.

It is left as an exercise to prove part b

Composition of  functions is associative.

Inverse property.

Identity property.

Exercise 2G

1 The binary operation ∗ is dened on R as follows. For any a, b ∈R

a ∗ b = a + b + 1

a Show that ∗ is commutative. b Find the identity element.

c Find the inverse of  the element a

2 Consider the binary operation multiplication on the set C \ {0}.

a Show that multiplication is commutative.

b  Show that multiplication is associative.

c Find the identity element under multiplication.

d Find the inverse of  the element a + bi under multiplication.

3 Consider the set A = {0, 1, 2, 3} under the binary operation ∗ such that  

for a, b ∈ A, a ∗ b = a + b (mod 4). Construct a Cayley table to illustrate  

this binary relation and show that the relation is commutative. Identify the  

identity element and hence nd the inverse of  each element in A
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4 For each of  the following sets, ∗ represents a closed binary operation  

dened on the given set S. Determine whether or not the identity element  

exists. If  it does, nd it and the inverse of  a ∈ S

a S = {2, 4, 6, 8}, a ∗ b = ab (mod 10) 

b S = Q \ {0}, a b
ab

∗ =

2
c S = +, a ∗ b = 2 + ab

5 Consider the binary operation multiplication on the set S = {2n|n ∈ }.

 a Show that 

  i S is closed under multiplication

  ii multiplication is associative

  iii an identity exists

   iv every element in S has an inverse in S

6 Given the set S = ]−1, 1[ and the operation 
+

∗

1

=
a+ b

ab
a b ,

 a show that

  i S is closed under ∗

  ii ∗ is associative

  iii an identity exists.

 b Find the inverse of  a ∈ S under ∗

Review exercise

EXAM-STYLE QUESTIONS

1 S = {1, 2, 3, 4, 5, 6} and the function f S S: →  is dened by  

f  (x) = 6x (mod 7)

a Prove that f  is a bijection.

b Show that f  is its own inverse.

2 Dene the operation ∗ on the sets A and B by A ∗ B = A′∪B′.

Show algebraically that 

a A ∗ A = A′ b (A ∗ A) ∗ (B ∗ B ) = A ∪ B c (A ∗ B ) ∗ (A ∗ B ) = A ∩ B

3 Let f  : A → B where A = ∞ ×
⎡

⎣⎢
⎡

⎣⎢
[ , [ ,0 0

2

π
, B = ∞ ×[ , [ [ , [0 0 1 and

f  (x, y) = (x cos y, sin y). Determine whether f is a bijection.  

If  it is, nd the inverse function f  −1 .

4 The operation ∗ is dened on  ×  as  

(a, b) ∗ (c, d ) = (ac + bd, ad + bc), where a, b, c, d ∈ . 

Find the identity element for this operation.

5 Consider three sets S, T and U

f  and g are two mappings such that f  : S → T, and g : T → U

i If  g  f  is surjective, prove that g is surjective

ii If  g  f  is injective, prove that f  is injective.



Extension of the concept of function84

6 The function f  : R → R is dened by f x x( ) cos
= +3

1

6

a Determine whether or not the function is injective or surjective,  

giving reasons.

b If  the domain is restricted to [0, π], what are the restrictions on the  

co-domain that would make f  invertible? Find the inverse function.

7 Let ∗ be the binary operation on the set S x x x= − < < ∈{ }1 1,   dened by 
+

+

∗ = ∈

1
, for any ,

x y
S

xy
x y x y

a Determine whether or not the operation ∗ is 

i commutative   ii associative.

b Establish whether or not an identity exists and if  so nd it.

8 The function f  : R → R is dened by f  (x) = e 2cosx + 1

a Find the exact range of  f

b i Explain why f is not an injection.

 ii Giving a reason, state whether or not f is a surjection.

c A new function g is now dened as follows: 

g : [0, k] → A where g (x) = e 2cosx + 1 and k ≥ 0.

 i  Find the maximum value of  k for which g is an injection. 

For this value of  k, what values can A take to make g (x) a bijection?

 ii Find an expression for g –1(x). 

 iii Write down the domain of  g –1

Chapter  summary
A relation that associates each element in a non-empty set S with a unique element in a 

non-empty set T is called a function from S to T.   

We denote this function by f  : S → T

The set S is called the domain and T, the target set, is called the co-domain.  

The set { }= ∈ =( ) | , ( )f S t t T t f s , subset of T, is called the range

A function f  : S → T for which each element of  the range, f  (S ), corresponds to exactly  

one element of  the domain, S, is said to be an injection, i.e. if  f a f b a b( ) ( )= ⇒ =

for a b S, ∈

If  every element in the co-domain of  a function is the image of  at least one element in  

the domain we say that the function is a surjection, i.e. for all b in the co-domain there 

exists an a in the domain such that f  (a) = b.   

A function is a bijection if  it is an injection and a surjection.  

Given f  : S → T where S and T are nite sets, then: 

a f  is injective ⇔ n(  f  (S )) = n(S )

b f  is surjective ⇔ n(  f  (S )) = n(T )
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Composite functions

If  g A B f B C: , :→ →  are functions, then f g A C : →  is also a function.

A function f  : A → B is bijective ⇔ it has an inverse.

A function f  : A → B  is bijective ⇔ its inverse is also a bijection.

Properties of  composite functions:

● Associativity f g h x f g h x   ( )( ) = ( )( )( ) ( )

● If  f  : S → T and g: T → S  are injections, then f g x g f x ( ) ( )( ) ( )and  are injective.

● If  f  : S → T and g: T → S  are surjections, then f g x g f x ( ) ( )( ) ( )and  are surjective.

The identity function for a set S is a bijection I S S
S

: →  such that I x x
S
( ) =  for all x S

Let f  : S → S be any function, then I f x f I x f xS S ( ) = ( ) =( ) ( ) ( ) for all x S

For a bijection f  : S → T such that = ∈ ∈( ) , and ,f x y x S y T  the inverse function 

f T S→
1
:  is such that f f x I f f y IS T

− −( ) = ( ) =1 1
 ( ) ( )and

A binary operation ∗ on a non-empty set S is a rule for combining  any two elements 

x y S,   to give a unique element c. This is denoted by x ∗ y = c. A binary operation on a 

non-empty set S is said to be closed if  for all a, b ∈S, a ∗ b ∈S.

A binary operation on a non-empty set S is closed if  for all a, b ∈S, A ∗ B ∈S. 

A binary operation ∗ on a non-empty set S is said to be associative if  for all a b c S, ,  ,  

a ∗ (b ∗ c) = (a ∗ b) ∗ c.

A binary operation ∗ on a non-empty set S is said to be commutative if  for all a b S,  ,  

a ∗ b = b ∗ a.

If  ∗ is a binary operation on S and there is an element e S  such that for every element 

x S , e ∗ x = x = x ∗ e, then we say that e is the identity element of  S under the  

operation ∗

The identity element of  a binary operation ∗ on S is unique.

Let ∗ be a binary operation on S with identity e. Then for all x ∈ S if  there exists an 

element y ∈ S such that x ∗ y = e = y ∗ x then we call y the inverse of  x, and we write  

y = x −

For a binary operation ∗ in S with identity e, if  the inverse exists it is unique, i.e. each x

element of  S has a unique inverse.

Let ∗ be an invertible associative binary operation on a non-empty set S with identity e.

The operation is said to satisfy 

i the left cancelation law, i.e. a ∗ b = a ∗ c ⇒ b = c

ii the right cancelation law, i.e. a ∗ b = c ∗ b ⇒ a = c
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The ‘Universal  
Theory of 
Everything’ in  
Mathematics

3

CHAPTER OBJECTIVES:

8.7 The denition of a group {G, ∗}; the operation table of a group is a  

Latin square, but the converse is false; Abelian groups.

8.8 Examples of groups: , ℚ, ℤ, and ℂ under addition; integers under addition 

modulo n; non-zero integers under multiplication modulo p, where p is prime; 

symmetries of plane gures, including equilateral triangles and rectangles; 

invertible functions under composition of functions.

8.9 The order of a group; the order of a group element; cyclic groups; generators; 

proof that all cyclic groups are Abelian.

8.11 Subgroups; proper subgroups; use and proof of subgroup tests.

Before you start

1 Given that f x x( ) = +
1

2
1 and g(x) = e x,

a Find the inverses of  functions, e.g. 

nd f −1(x) and g−1(x). Exchanging x

and f (x), solving for x, and then using 

inverse notation, we obtain  

f −1(x) = 2(x − 1); g−1(x) = ln x

b Find the composition of  functions,  

e.g. nd ( ) ( )f g x− −1 1
 . Substituting 

g−1(x) for the variable in f −1(x) we 

obtain ( )( ) (ln )f g x x 

= 
1 1 2 1

c Recognize that function composition 

is not commutative, e.g. nd 

( ) ( )g f x− −1 1
 . Substituting f 1

for the variable in g −1 we obtain 
− −

= −
1 1( ) ( ) ln[2( 1)]g f x x

Clearly, by considering the formulas, 

function composition is not 

commutative.

1 Given that f and g are functions on ℝ+ such 

that f (x) = ln(x + 1) and g (x) = x2, nd the 

following:

a ( ) ( )f g x

b ( ) ( )f g x
1

c ( ) ( )g f x

d ( ) ( )f g x− −1 1
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2 Check whether the properties of  closure, 

commutativity, associativity, identity and inverse 

hold for a set under a given binary operation, e.g. 

{ℝ, ∗}, a ∗ b = 2ab. Determine if  any element(s) 

would have to be removed from ℝ in order for the 

properties of  identity and inverse to hold under ∗

Closure, i.e. for all a b a b, ,∈ ∈ ∗ .  

Since a ∗ b = 2ab, 2ab ∈ℝ, {ℝ, ∗} is closed.

Commutativity, i.e. for all a, b ∈ℝ, a ∗ b = b ∗ a. 

Since a b ab ba b a∗ ∗= = =2 2 , {ℝ, ∗} is 

commutative.

Associativity, i.e. for all 

a b c a b c a b c, , , ( ) ( )∈ = ∗ ∗ ∗ ∗ . Since

a b c a bc a bc abc∗ ∗ ∗( ) ( ) ( )= = =2 2 2 4  and 

∗ ∗ = ∗ =( ) (2 ) 4a b c ab c abc , {ℝ, ∗} is associative.

Identity, i.e. for all a ∈ℝ there exists an e ∈ℝ

such that a ∗ e = a = e ∗ a.

We need to nd an m ∈ℝ such that  

a ∗ m = a = m ∗ a. (Note that since we are not 

sure that the set has an identity under the binary 

operation, we do not yet use the symbol e for 

identity.)

For the right hand identity, a m a am a∗ = ⇒ =2 ,  

2 0
2

1

2
am a m a

a

a

= ⇒ = = ≠, . For the left hand 

identity, m a a m a∗ = ⇒ = ≠
1

2
0, . Hence, e = 

1

2
. 

Strictly speaking, since {ℝ, ∗} is commutative, it is

enough to look for either the right identity or left 

identity, since they will be equal.

Inverse, i.e. for all a ∈ℝ there exists an a–1 
∈ℝ

such that a a e a a∗ ∗
− −

= =
1 1 . We need to nd an 

n ∈ℝ such that ∗ = = ∗a n e n a

(Note again, that since we do not know if  each 

element has an inverse, we do not yet use the 

notation for inverse, a−1.) Since a n an∗ = =2
1

2
, 

n

a

=

1

4
, a ≠ 0. And since (ℝ, ∗) is commutative, we 

need only nd either the right or left inverse.

For ℝ to have an identity and inverse under ∗, 

0 would have to be excluded. Hence, all the 

properties hold for {ℝ\{0}, ∗}.

The geometric nature of Islamic art 

incorporates complex symmetries that have 

been mathematically analyzed and explored. 

Perhaps the most famous of such art 

forms lies within the Alhambra, a fortress 

constructed in Andalusia, Spain, in the 9th 

century during the last Islamic sultanate on 

the Iberian Peninsula. Some of the geometric 

murals in the Alhambra are examples of 

symmetry groups, which you will learn 

about in this chapter, and have some of the 

properties that you have been working with 

on the left hand side in the given example.

2 Check whether the properties of  closure, 

commutativity, associativity, identity and 

inverse hold for the following sets under 

the given binary operations.

a ( , ),  
+

=a b a
b

b ( , ),
+

∗ ∗ =a b
ab2

c ( , ),   = a b ab 1
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Group Theory

The search in Physics for a theory that fully explains and connects all 

physical aspects of  the universe results from two major scientic 

paradigms in the last century: General Relativity and Quantum 

Mechanics. General theorems providing a mathematical basis for such a 

‘universal theory of  everything’ have been attempted, and, at the time of  

writing, a recent work entitled “Generalized Mathematical Proof  of  

Einstein’s Theory Using a New Group Theory” was reviewed by both the 

American Mathematical Society and the European Mathematical Society. 

Indeed, increasingly it seems as if  Group Theory is the ‘unifying theory 

of  everything’ in mathematics, i.e. a branch of  mathematics that can 

connect all other branches by nding similarities in their inherent 

structures. In essence, Group Theory measures symmetry, the “one idea 

by which man through the ages has tried to comprehend and create order, 

beauty, and perfection” – Hermann Weyl.

In 824, the Norwegian Mathematician Niels Henrik Abel published 

his ‘impossibility theorem’, in which he proved there is no general 

solution, or formula, for nding the solutions of  polynomial equations 

of  degree 5 (quintics) or higher. At about the same time, a brilliant 

French teenager, Evariste Galois, explained why this is the case. He not 

only resolved one of  the great challenges of  his day, but more 

importantly, he discovered a compelling connection between symmetry, 

permutation groups (which you will learn about in Chapter 4), and the 

solvability of  polynomial equations.
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Although Galois and Abel laid the foundations of  the mathematics 

of  Group Theory, it is a 20th century female mathematician, 

Emily Noether, who is credited with the title of  ‘father’ of  

Abstract Algebra, mainly through changing the 9th century 

emphasis of  its use from solving polynomial equations into 

creating an abstract axiomatic system.

Today, Group Theory is used in many dierent areas of study, such as 

elementary Particle Physics, Music Theory, Crystallography, Chemistry, 

Campanology (the study of bells and bell-ringing), and perhaps its most 

popular usage in terms of the masses: solving Rubik’s Cube!

3.1 Groups

A group consists of  a set and a binary operation on that set. 

The set with a binary operation has the four properties of  closure, 

associativity, existence of  an identity element, and existence of  inverses.

Denition

The set G with a binary operation ∗ is called a group if  the 

following four axioms (properties) hold:

1 Closure: for all a b G, ∈ , a b G∗ ∈

2 Associativity: for all a b c G a b c a b c, , , ( ) ( )∈ ∗ ∗ = ∗ ∗

3 Identity: for all a G∈ , there exists an element e G∈ such that  

a ∗ e = a = e ∗ a

4 Inverse: for each a G∈  there exists a G∈
1  such that 

a a e a a∗ ∗
− −

= =
1 1

The group G with binary operation ∗ is denoted by { , }G ∗

Note that the commutative property is not a required group axiom.  

For this reason it is important that both the left and right identity 

and inverse properties be conrmed. For example, the set ℤ under 

the binary operation of  subtraction has a unique right identity 0, 

i.e. a a− 0  for all a ∈ℤ. However, 0 −  −a a, hence it has no left 

identity. Therefore {ℤ, –} is not a group.

If in addition to the four properties above, a set G with binary 

operation ∗ is also commutative, then it is said to be an Abelian group

Denition

A group {G, ∗} is an Abelian group if  G is commutative under ∗, 

i.e. for all a b G, ∈ , a b b a∗ ∗=

It is not necessary 

to check for both left 

and right identities if 

the binary operation is 

commutative.
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It is important to note that the identity element is unique, as are the 

inverses, i.e. a group contains only one identity element, and each element 

contains a unique inverse. In Chapter 2 you proved these results for binary 

operations on a set S using the left and right cancellation laws.

Groups may be nite or innite, i.e. consist of  nite or innite sets.  

Set A is nite, i.e. its cardinality is n N∈ , if  there is a bijection from set 

{0, , 2, …, n} to A. A set is innite if  it is not nite. If  a set G is nite, 

then the group is also nite, otherwise it is an innite group.

Innite groups 

You have already been working with many examples of  innite groups, 

e.g. the sets ℝ, ℚ, ℤ and ℂ under the binary operation of  addition. 

Since the binary operation of  addition is commutative, these four sets 

under addition are furthermore Abelian groups. 

Example 

Show that the following innite sets are groups under the given binary operation. 

Determine if  any are Abelian groups.

a { , }
+

×

b { \{ }, } 0 ×

c The set of  all real-valued functions with domain ℝ under addition.

a Closure: for all a, b ∈ ℝ+, ab ∈ ℝ+

Associativity: for all a, b, c ∈ ℝ+, a(bc) = (ab)c

Identity: for all a ∈ ℝ+, a ×  = a =  × a

Inverse: for all a
a

∈ ∈
+ + ,

1
 and a a

a a

× = = ×
1 1

1

{ℝ+, ×} is a group since all group properties hold.

Commutativity: for all a, b ∈ ℝ+, ab = ba,  

hence {ℝ+, ×} is an Abelian group.

Show that all four of  the group 

properties hold.

Determine if  the commutative 

property holds.

b Closure: for all a, b ∈ ℚ\{0}, ab ∈ ℚ\{0}

Associativity: for all a, b, c ∈ ℚ\{0}, a(bc) = (ab)c

Identity: for all a ∈ ℚ\{0}, a ×  = a =  × a,  ∈ ℚ\{0}

Inverse: for all a
a

∈ ∈ \{ }, \{ }0 0
1

 and

a a

a a

× = = ×
1 1

1

{ℚ\{0}, ×} is a group since all group properties hold.

Commutativity: for all a, b ∈ ℚ\{0}, ab = ba,  

hence {ℚ\{0}, ×}, is an Abelian group.

Show that all four of  the group 

properties hold.

Determine if  the commutative 

property holds.
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c  Closure: for all real-valued functions f and g, f  + g is a 

real-valued function.

  Associativity: for all real-valued functions f, g and h,  

f  + ( g + h) = (  f  + g) + h.

  Identity: for all real-valued functions f, g (x) = 0 is a 

real valued function for all real values of  x, and 

f  + g = f  = g + f.

  Inverse: for all real-valued functions f, there exists a 

real valued function –f  such that 

f  + (−f  ) = g = (−f  ) + f, where g (x) = 0, for all x

  The set of  all real-valued functions under addition is a 

group, since all group properties hold.

  Commutativity: for all real-valued functions f and g,  

f  + g = g + f, hence the set of  all real-valued functions 

under addition is an Abelian group.

Show that all four of  the group 

properties hold.

Determine if  the commutative 

property holds.

We now consider other innite sets under a binary operation and 

determine if  each is a group. For example, the set Z+ under addition 

is not a group, since there is no identity for addition in the set Z+. 

Also, the set of  all non-negative integers under addition is not a 

group, because although it contains the identity element 0, there are 

no inverses for the non-zero elements of  the set. (It is sucient to nd 

just one element in the set for which an inverse does not exist in order 

to show that the set under the binary operation is not a group.)

Example 2

Determine if  the following sets are groups under the given binary operation.

a Z+ under multiplication

b N under the binary operation ∗ dened as a ∗ b = |a – b|

c Q+ under the binary operation # dened as a b
ab

# =
2

, a b, ∈
+



a  Since the identity is 1, there is no inverse for 2. 

Indeed, other than 1, no other elements of  the 

given set have an inverse.

Identify a property of  groups that is 

not satised. 

b If  a = 1, b = 2, and c = 3, then

∗ ∗ = ∗ − = − − =( ) 1 |2 3| |1 | 1|| 0a b c

( ) |1 2| 3 || 1| 3| 2a b c∗ ∗ = − ∗ = − − =

  Associativity does not hold, so (N, ∗) is not a 

group.

Identify a property of  groups that is 

not satised.
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c  Closure: a b
ab

# = ∈
+

2
 , so closure holds.

  Associativity:

a b c a

a
bc

bc

abc
# ( # ) #= = =

⎛

⎝
⎜

⎞

⎠
⎟

2

2

2 4

( # ) # #a b c c
ab

ab
c

abc
= = =

2

2

2 4

  Hence associativity holds.

  Identity: nd b ∈ Q+ such that:

a b a a b
ab

# = ⇒ = ⇒ =

2
2, and

b a a a b
ba

# = ⇒ = ⇒ =

2
2

  Hence, the identity e = 2; 2 ∈Q+

  Inverse: nd c ∈Q+ such that

a c c
ac

a

# = ⇒ = ⇒ =2 2
2

4
, and

c a c
ca

a

# = ⇒ = ⇒ =2 2
2

4

  Hence, a a

a

− − +

= ∈
1 14

; 

  Since all the group axioms hold, { , #}Q
  is a group.

Go through all the group axioms to see 

if  they hold.

Write your conclusion.

Investigation

Consider the dierent number sets and their subsets, e.g. Z, Z+, and C etc.,  

the arithmetic operations +, ×, and the inverse operations − and ÷. Select a  

set and determine the binary operations under which it forms a group.  

The following table headings might help organize your work.

From the examples and the investigation, you have seen that in order 

to show a given set with a binary operation is not a group, it is 

sucient to show that any one of  the group properties does not hold.
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In part c of  Example 2 you may have noticed that it is important to 

ascertain the following when checking to see if  the properties hold:

● The identity element must be in the given set, and must commute 

with every element in the set.

● The inverse for each element must be in the given set, and must 

commute with the original element.

Example 

Show that the set of  bijections forms a group under function composition.

Closure: if  f and g are bijections such that → →: , :f A B g B C

then g f A C : → . Hence, the composition of  two bijections is 

a bijection and closure holds.

Conrm the group 

properties. This was proven 

in Chapter 2, theorem 5c.

Associativity: if  f, g and h are bijections, then for all x, 

( )

( )( )

( )

( ) ( ) ( )

( )

( ) ( )

( )

h g f h g f x

h g f x

h g f x

h g f

=

=

=

=

  



 

Hence, the composition of  bijections is also associative.

The proof  that function 

composition is associative 

is done in Chapter 2, 

theorem 4.

Identity: the function e x x:   is a bijection. For all functions f, 

= = e f f f e. Hence, e is the identity.

Inverse: every bijection f  has an inverse f- −  that is also a 

bijection such that − −

= = 
1 1f f e f f

Hence, the set of  bijections forms a group under function 

composition.

This was proven in  

Chapter 2, theorem 3b.

State your conclusion.

You have already seen that function composition is not usually commutative,  

hence the group in Example 3 is not Abelian.

Exercise 3A

1 Show that the set S = {2n | n ∈ Z} under multiplication forms a group.

2 Show that under addition, the following sets of  functions f: R form a group: 

 a all continuous functions

 b all dierentiable functions.

3 Determine if  the following sets under the given binary operation form a group:

 a R+ under the operation # dened as a b ab# =

 b R\{0} under the operation  dened as a b a b =

 c ∈N3
n

n  under multiplication

 d a bi a b a bi+ ∈ + =, ,R 1  under multiplication.
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4 a  Show that the set S = R\ {–1} under ∗ dened as 

a b ab a b∗ = + +  forms a group. 

 b Determine if  {S, ∗} is an Abelian group.

 c Find the solution of  the equation 2 ∗ x = 7 in S

 d Explain why {R, ∗} does not form a group.

5 Let R∗ = R\{0} and S = R × R∗, i.e. S is the set of  all ordered pairs (a, b)  

such that a and b are real numbers, and b is non-zero. Dene ⊕ such that  

(a
1
, b

1
) ⊕ (a

2
, b

2
) = (a

1
+b

1
a

2
, b

1
b

2
).

 a Show that S, ⊕  is a group.

 b Calculate the following: 

  i (3, –2) ⊕ (1, –1) 

  ii (1, 2) ⊕ (–0.125, 1.4)

 c Determine if  {S, ⊕} is Abelian.

6 Show that = ∈ ∈ { | , }S nm n m  forms a group under addition.

7 Show that the set of  all real-valued functions of  the form f  (x) = ax + b, a ≠ 0,  

whose domain is R form a group under the binary operation composition  

of  functions. Does it form an Abelian group?

Finite groups

So far all our examples have been of  innite groups, i.e. groups where  

the set G has an innite number of  elements. We will now consider groups  

dened on nite sets.

Since a group must contain an identity, it must contain at least one  

element. The only possible binary operation ∗ on {e} must necessarily  

be dened as e ∗ e = e. The identity element is its own inverse, and the  

properties of  closure and associativity obviously hold. We say that  

the order of  {{e}, ∗} is , i.e. the number of  elements in the group is .

Denition

The order of  a group {G, ∗} is the number of  elements in the 

group. If  a group has an innite number of  elements, it is said to 

have innite order, i.e. | G  | = ∞.

We will now create a nite group of  order 2. Since one of  the elements  

must be the identity, we dene the set S as {e, a}, e ≠ a, and the binary  

operation ∗. We now set up an operation table for these two elements.  

Checking the group properties, we see from the table below that closure  

holds, since there are no extraneous elements. We have said that e is the  

identity element, and checking, we see that e ∗ e = e and a ∗ e = e ∗ a = a.  

If  e is the identity, three out of  our four group axioms are satised.  
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The one that remains to consider is a∗a. For the closure property  

to hold, the result can only be e or a. The result cannot be a since  

then axiom 4 would not be valid, i.e. a would not have an inverse  

in the set S. Hence, in order for {S, ∗} to satisfy all the group  

properties, we can ll out the table only in the following way.

∗ e a

e e a

a a e

Note that we can exchange the rows and columns, and obtain

∗ a e

a e a

e a e

which is actually the same as the rst table. By convention, however,  

we put the identity element rst.

Checking for the associative property can be a tedious process for  

larger sets, but we will nd ways to get around this later on. For this  

set of  order 2, 23 or 8 distinct cases would have to be checked, and is  

left for the student as an exercise.

Let us do the same with a set of  three elements, S = {e, a, b}, under the  

binary operation ∗. Since e is the identity, the st row and column mirrors  

the initial order of  the elements. 

∗ e a b

e e a b

a a

b b

For the 2nd row, 2nd column entry, we can choose either e or b. If  we  

choose e, we would have to enter b in the 2nd row, 3rd column.

∗ e a b

e e a b

a a e b

b b

This would mean, however, that we have two left identities for b, namely  

e and a, since e∗b = b and a∗b = b. Hence, we have no choice but to put b

in the 2nd row, 2nd column, and complete the table as below. You should  

now justify the completion of  the table using the group axioms.

∗ e a b

e e a b

a a b e

b b e a
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To conrm the associative property, you would have to show that it holds in  

33, or 27, distinct cases. To spare you the task of  going through this tedious process,  

we can conrm for you here that indeed the associative property holds. 

With the previous examples of  nite sets of  orders 2 and 3 as background,  

we will be able to list some necessary conditions that an operation table must  

satisfy in order to give a group structure on a set.

 In the row and column containing the identity element e, the rows and columns  

are mirrored in the same order as they originally appear, i.e. the condition  

e∗x = x = x∗ e means that the row and column representing the operations  

with e must contain exactly the elements appearing in the same order as  

across the top of  the table and down the left side of  the table.

 Since every element has a unique inverse, the identity element e can  

appear only once in each row and column. 

 The equations a∗x = b and y∗a = b must have unique solutions x and y.  

(This property will be proved later.) This means that each element of  the  

group must appear in each row and column only once. 

An operation table that has the above properties is called a Latin Square. 

Denition

A Latin Square is a square array of  n rows and n columns such  

that each element or symbol occurs only once in each row and  

each column.

 Latin squares rst arose in the 18th century with  

card games, such as the problem of arranging the  

kings, queens, jacks and aces into a 4 by 4 array such  

that each row and column contains one card from each  

of the 4 suits, and one card from each of the 4 ranks  

previously mentioned. In 1779, Euler posed the problem  

that he claimed was impossible to solve: of arranging  

36 ofcers from 6 ranks and 6 regiments into a 6 by 

6 square so that each row and each column contains 

one ofcer from each rank and one from each regiment.

Recently, the development of Latin squares has gained 

a major impetus in designing statistical experiments and  

also in nite geometries.

We have shown above that if  the elements of  a set under a given binary operation  

form a group, we can place the elements in a Latin square. Conversely, if  elements  

of  a set under a given binary operation are placed in a Latin square, the set under  

the binary operation will form a group provided that the group properties hold.  

It is therefore not enough to assume that the set under the binary operation is  

a group because it can be placed in a Latin square. 
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Although the IB HL syllabus uses Cayley table and operation table

interchangeably, historically a Latin square that forms a group structure is 

called a Cayley table, after the 19th century mathematician Arthur Cayley. He 

was instrumental in founding the British school of pure mathematics and was 

also responsible for obtaining admission for women into Cambridge University. 

He was one of the rst to realize that many seemingly different areas of 

mathematics can be brought together under Group Theory. His n-dimensional 

geometry has been applied to both relativity theory and quantum mechanics.

Example 

Construct a Cayley table for the set S = {, −, i, −i } under multiplication, and 

show that {S, ×} is a group.

× 1 −1 i −i

1  − i −i

−1 −  −i i

i i −i − 

−i −i i  −

{ , }S ×  forms a group if  the following properties hold:

Closure: for all a b S a b S, ,∈ × ∈ . From the operation 

table it is evident that the set is closed under ×.

Associativity: for all a, b, c ∈ S, a × (b × c) = (a × b) × c

Multiplication of  complex numbers is associative.

Identity: for all a ∈ S,  × a = a = a × ,  ∈ S

Inverse: for all a S∈  there exists a S∈
1  such that 

a a a a× = = ×
− −1 1

1 . 

a  −     i −i

a−  − −i   i

From the table we see that  and − are self-inverses 

and i and –i are mutual inverses. Hence { , }S ×  is a group.

Construct an operation table, 

writing the identity element as the 

rst element.

Conrm the group properties.

You may assume multiplication of  

complex numbers is associative.

State the identity.

It is not enough to simply state that 

inverses exist. You must also 

identify the inverse of  each element.

State your conclusion.

Is the above group Abelian? We know that the set of  complex  

numbers under multiplication is commutative, therefore the  

commutative property will hold for S, since ⊆S C. A visual  

method for determining if  it is Abelian is to consider the  

symmetry about the main diagonal of  its Cayley table,  

i.e. the diagonal from the upper left hand corner to the  

lower right hand corner.  

× 1 −1 i −i

1  − i −i

−1 −  −i i

i i −i − 

−i −i i  −
Since there is symmetry about the main diagonal of  the Cayley  

table, the group is Abelian.
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Groups of integers modulo n

You have worked with integers modulo n, written (mod n), in  

Chapter . Two integers, a and b, are said to be congruent (mod n)  

if  a and b have the same remainder on division by n. In other words, 

a b n a b kn k≡ ⇔ − = ∈(mod ) , Z

Notation for Modular arithmetic:

 = − ∈ ≥{0, 1, 2,…, 1}, , 2
n

n n nZ N

 +
n
 denotes addition (mod n), and a +

n
b is the remainder  

when a + b is divided by n, i.e. a +
n
 b = a + b (modn)

 ×
n
 denotes multiplication (mod n), and a ×

n
b is the  

remainder when a × b is divided by n, i.e. a ×
n

b = ab (modn) 

Modular arithmetic is 

used in modern day 

banking. Banks require an 

IBAN (International Bank 

Account Number) 

identication for 

transferring funds between 

bank accounts. IBAN 

makes use of modulo 97 

to trap user input errors in 

bank account numbers.

Example 

a Construct a Cayley table for {ℤ
4
, +

4
} and conrm that it forms a group.

b Construct an operation table for Z4 0\{ } under ×
4
 and show that it does not  

form a group.

c Determine whether or not {ℤ
4
, ×

4
} is a group.

a Closure: for all a b a b, ,∈ + ∈Z Z4 4 4

Closure is evident from the table.

+
4

0 1 2 3

0 0  2 3

1  2 3 0

2 2 3 0 

3 3 0  2

Associativity: for all 
4

, , ,a b c ∈ Z

4 4 4 4( ) ( )a b c a b c+ + = + +

Addition (mod n) is associative.

Identity: for all 
4
,a ∈Z

4 4 4
0 0, 0a a a+ = = + ∈ Z

Inverse: for all a ∈Z
4
 there exists a 

1

4
Z  such 

that a a a a+ = = +
− −

4

1 1

4
0

a 0  2 3

a− 0 3 2 

Hence, +
4 4

Z  forms a group.

Construct the Cayley table.

Conrm the group properties.

You may assume addition (mod n) is 

associative.

State the identity.

Identify the inverses of  the elements.

State your conclusion.
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b The operation table for Z4 0\{ } under the binary 

operation ×
4
 is:

×
4

1 2 3

1  2 3

2 2 0 2

3 3 2 

  We see from the table that closure does not hold, 

since 0 appears in the table, and 0 04∉Z \{ }

  Hence, 4 4\{0}, +Z  does not form a group.

c The operation table for 
4 4
, ×Z  is:

×
4

0 1 2 3

0 0 0 0 0

1 0  2 3

2 0 2 0 2

3 0 3 2 

Method 1

The operation table is not a Latin Square, i.e. the 

elements 0 and 2 appear more than once in certain 

rows and columns. 

Method 2

The identity element for all elements is , but 0 and 

2 have no inverses.

Hence { }4 4
, ×  does not form a group.

Construct the operation table.

Identify a group axiom that does not 

hold. (It is sucient to nd just one 

axiom that does not hold.)

State your conclusion.

Construct the operation table.

Check if  the operation table is a Latin 

Square.

Find one example of  a group property 

that does not hold.
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Example 

The Cayley table for a set of  5 elements under the operation ∗ is given here. 

∗ p q r s t

p s r t p q

q t s p q r

r q t s r p

s p q r s t

t r p q t s

a State with reason why the Cayley table is a Latin Square.

b Determine whether or not each of  the group properties hold.

c Solve the equation (p∗x)∗x = x∗p.

a The Cayley table is a Latin Square because each 

element appears only once in each row and column.

b Closure is evident from the table. The right and left 

identity for each element is s. Each element is a self-

inverse. The property of  associativity does not hold, 

since (p∗q)∗ t=r∗ t=p and p∗ (q∗ t)=p∗ r=t and t ≠ p

c Solutions are: q, r, s and t

Use the denition of  Latin Square.

Go through all the group properties 

to determine if  they hold.

In this example it is best to 

substitute the elements for x as the 

operation is not associative.

The example above shows a Latin Square that is not a group table.

Symmetry groups

We will now consider groups of  plane gures under the  

composition of  certain plane transformations that preserve  

symmetrical properties.

Consider the symmetry in the Isle of  Man motif  here.
0

a

b

c

The coat of arms of the Isle of Man is the three-legged motif. Although 

Alexander III introduced it to Scotland in the mid 13th century after he 

gained control of the Manx territory, its origins go back to ancient times. 

The motif carries the latin words “Quocunque Jeceris Stabit”, meaning “it 

will stand which ever way you throw it”. This is thought to be a reference to 

the independent and resilient spirit of the Manx people.

This gure has three rotation symmetries about the center O of  20°,  

240° and 360° (or 0° ). We can label these transformations as follows:

r is a clockwise rotation of  20° about O

s is a clockwise rotation of  240° about O

t is a clockwise rotation of  360° about O
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Since symmetries are transformations, they can be combined, i.e. given two  

transformations, we can perform one followed by the other. For example,  

on the original gure we can perform the transformation r (rotation of   

20 degrees through O clockwise) and follow this with the transformation  

s (rotate through 240° through O clockwise). The result is illustrated as follows:

o

r

o

s

t

a

cba

b

c a

b

c

o

Looking at the combined transformations, the result is to leave the original  

gure unchanged. This same result can be obtained by rotating the original  

diagram 360°, or transformation t. Hence, “transformation r followed by  

transformation s” is the same as “transformation t”, and is written in  

symbols as s r t = . This is read as “transformation s following  

transformation r”. In other words, similar to function composition,  

s r t =  is called the composition of  r with s, i.e. we rst apply r, and  

then apply s. Likewise, as with function compositions, s r t =  is  

performed from right to left

We will now determine if  our set of  rotations forms a group under  

composition of  symmetry transformations by creating its Cayley table.  

We will place t rst, since it is the identity transformation. It is easy  

for you to conrm the results on the right. 

 t r s

t t r s

r r s t

s s t r

Notice that this table is a Latin Square, hence closure holds.  

The identity is t, which is its own inverse, and r and s are mutual  

inverses. Just as with function composition, symmetry  

transformation is associative.

Let us now consider the symmetries of  the equilateral triangle XYZ

There are three reective symmetries about the medians of   

the triangle. (A median connects a vertex of  a triangle to  

the midpoint of  the side opposite the vertex.) We can label  

the transformations as follows: 

X

Z

a

c

O b

Y

A: reection in median a

B: reection in median b

C: reection in median c
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There are three rotation symmetries about O. We can label these:

 I : rotation about the center 360° (or 0° ) clockwise (or anti-clockwise).

R
1
:  rotation about the center 20° anti-clockwise (which is the same as  

“rotation about the center 240° clockwise”).

R
2
:  rotation about the center 20° clockwise (which is the same as 

rotation about the center 240° anti-clockwise).

It might be helpful to make a cardboard copy of  the triangle in order to see the  

results of  the various transformations. 

In the three diagrams below, we see transformation B followed by  

transformation A, and this is the same as the single transformation R


Note that the median lines are xed in space and do not rotate with the triangles.

X

Z

a

c

R
1

O b

Y

B

Z

X

a

c

O b

Y Z

Y

a

c

O b

A

Hence, AB = R

, or B followed by A results in R



We will now construct the Cayley table for the symmetries of  the equilateral  

triangle, and it is left to you to conrm the results in the table.

 I R
1

R
2

A B C

I I R


R
2

A B C

R
1

R


R
2

I C A B

R
2

R
2

I R
1

B C A

A A B C I R


R
2

B B C A R
2

I R


C C A B R


R
2

I

The Cayley table conrms that the set {I, R

, R

2
, A, B, C} forms a group  

under composition of  transformations. The property of  closure is  

evident. I is the identity. I, A, B and C are all self-inverses and R


and R
2
 are mutual inverses. Composition of  transformations is associative. 

Since the table is not symmetrical about the main diagonal,  

this group is not Abelian.
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The set of  six symmetries of  the equilateral triangle with the binary operation  

of  composition of  transformations is called the symmetry group of  equilateral  

triangles. All the symmetries of  geometrical gures are elements of  a larger  

set of  transformations called isometries, i.e. a transformation of  the points  

in 2D or 3D space such that distances between points remain unchanged.  

Hence, under an isometry, a geometrical gure retains its shape and size,  

but changes its position in space. There are four types of  plane isometry:  

rotation, reection, translation, and glide-reection, i.e. reection together  

with a translation in the direction of  the line of  reection. It can be  

shown that the set of  all plane isometries forms a group under the  

dierent transformations.

Example 

a Construct a Cayley table for the group of  symmetries  

of  a square{S, } using the following notation:

y

D C

A B

x

I: identity (rotation of 360° in either direction about the center)

R

: rotation of  90° anti-clockwise about the center

R
2
: rotation of  80° anti-clockwise about the center

R
3
: rotation of  270° anti-clockwise about the center

X: reection in the x-axis

Y: reection in the y-axis

A: reection in the diagonal AC (reection in the line y = x)

B: reection in the diagonal BD (reection in the line y = −x)

b State whether or not the group is Abelian.

a
 I R


R

2
R

3
X Y A B

I I R


R
2

R
3

X Y A B

R


R


R
2

R
3

I A B Y X

R
2

R
2

R
3

I R


Y X B A

R
3

R
3

I R


R
2

B A X Y

X X B Y A I R
2

R
3

R


Y Y A X B R
2

I R


R
3

A A X B Y R


R
3

I R
2

B B Y A X R
3

R


R
2

I

b Since the table is not symmetric about the main 

diagonal, the group is not Abelian.

Enter the results of  the binary 

operation under the dierent 

transformations into the table.

Since we are told that this is a 

group, we need only consider the 

commutative property to determine 

if  it is Abelian.
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Symmetry groups are used throughout the study of  

chemistry. The symmetry of a moleculeprovides  

information on the energy levels of its orbital and  

transitions that can occur between energy levels.  

These can all be found without rigorous calculations,  

which makes group theory so very powerful in the  

study of the physical aspects of molecules.

Exercise 3B

1 a Copy and complete the given table so that the set {e, x, y, z} forms  

a group under ∗

∗ e x y z

e e x y z

x x e

y y e

z z e

b Use the table to simplify the following:

i y ∗ (z ∗ x) ii (x ∗ y) ∗ ( y ∗ z)

2 S = {a, b, c, d, e} under the binary operation ∗ is dened in the table below.

∗ a b c d e

a a b c d e

b b c e a d

c c a d e b

d d e a b c

e e d b c a

a Simplify: 

i a ∗ (b ∗ c) ii (a ∗ b)∗ c iii b ∗ (d ∗ c) iv (b ∗ d )∗ c

b Determine if  {S, ∗} has an identity element, and name it if  it does.

c Determine whether each element has an inverse, and name its inverse.

d Give two reasons why {S, ∗} does not form a group.

3 Show that the set S ={ f, g, h} such that f  (x) = x, g x
x

( ) = −1
1

, and h x
x

( ) =

1

1

forms a group under function composition. Determine if  the group is Abelian.

4 Construct Cayley tables for {ℤ
5
, +

5
} and {ℤ

5
\{0}, ×

5
}, and conrm  

that both form a group. Use the tables to solve the following equations in ℤ
5
:

a x + 4 = 3 b 2x = 3 c 4x + 1 = 3

d 3(x + 1) = 1 e 4x + 1 = 2x
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5 Construct an operation table for S = {2, 4, 6, 8} under ×
10

 and  

determine if  it forms an Abelian group.

6 A set of  six complex numbers forms a group under multiplication.  

If  one of  the complex numbers is 
1

2
1 3( )+ i , nd the other  

ve numbers.

7 Construct Cayley tables for the symmetries of  the following  

gures, and show that each one forms a group. (You must  

rst decide on all the symmetries that the gure contains.) 

 a An isosceles triangle

 b A rectangle

 c A cuboid

8 Express the cube roots of  unity in the form a + bi, and show that  

they form a group under multiplication.

9 Write out the operation table for Z
2
 × Z

2
 and determine if  it  

forms a group under +
2
.  

(Z
2
 = {0, 1}, hence Z

2
 × Z

2
 = {(0, 0), (0, 1), (1, 0), (1, 1)}).

10 Show that if  n = pq, where p, q are both integers greater than 1,  

then (Z
n 
, ×

n
 ) does not form a group.

3.2 Properties and theorems of groups and subgroups

In the rst part of  this chapter, you have been working with both nite  

and innite groups, and using some group properties intuitively.  

We will now write these group properties, or theorems, and their proofs.  

First we will prove the right and left cancellation laws for groups.

Right and left cancellation laws for groups

Given a group {G, ∗} and a, b, c ∈G

i the right cancellation law holds, i.e. a ∗ c = b ∗ c ⇒ a = b and 

ii the left cancellation law holds, i.e. c ∗ a = c ∗ b ⇒ a = b.

Proof:

i a ∗ c = b ∗ c ⇒ (a ∗ c) ∗ c−1 = (b ∗ c) ∗ c−1 since c−1
∈ G

⇒ a ∗ (c ∗ c−1) = b ∗ (c ∗ c−1) by the associative property. 

⇒ a ∗ e = b ∗ e by the property of  inverse, and 

a ∗ e = b ∗ e ⇒ a = b by the identity property. Q.E.D.

The proof  of  ii is left for you to complete.
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Theorem 1

A group {G, ∗} has the following properties.

a The identity element for a group is unique.

b For all a ∈G, the inverse of  a, a−, is unique.

c For any a, b ∈G, the equations a∗x = b and y∗a = b, x, y ∈G, have 

unique solutions in G. (For nite groups, this means that each 

element would appear only once in every row and column of  its 

operation table.)

Proofs:

A common strategy to prove uniqueness is to assume that uniqueness  

does not hold, i.e. there are two distinct elements, and then show that  

these two elements are indeed equal.

a Suppose there are two identity elements e

 and e

2
. Then, for any a G∈ ,  

a e a e a∗ ∗
1 1
= =  and a e a e a∗ ∗

2 2
= = . Therefore, taking each corresponding  

part of  both expressions separately, a e a e e e∗ ∗
1 2 1 2
= ⇒ =  by the left  

cancellation law, and, e a e a e e
1 2 1 2
∗ ∗= ⇒ =  by the right cancellation law.  

Hence, uniqueness of  the identity holds.

b Suppose that a G∈  has two inverses, a
1

1 and a
2

1. It follows then that  

a a e a a∗ ∗
1

1

1

1− −

= =  and a a e a a∗ ∗
2

1

2

1− −

= = . Taking each corresponding  

part of  both expressions separately, a a a a a a∗ ∗
1

1

2

1

1

1

2

1− − − −

= ⇒ =  by the  

left cancellation law, and a a a a a a
1

1

2

1

1

1

2

1− − − −

= ⇒ =∗ ∗  by the right  

cancellation law. Hence, uniqueness of  the inverse of  an element holds.

c We rst need to show the existence of  at least one solution for the  

equations a x b∗ =  and y a b∗ =

Solving for x: a x b a a x a b∗ ∗ ∗ ∗= ⇒ =
− −1 1( ) , since a G∈

1 .  
− −

⇒ ∗ ∗ = ∗
1 1( )a a x a b by the associative property.  

⇒ ∗ = ∗
1

e x a b by the property of  inverse, and  

⇒ = ∗
1

x a b by the property of  identity. Hence, we obtain x a b=
1
∗ .  

Finding the solution for y is left for you to do.

Now, substituting the solution we found for x, 

− −

∗ ∗ = ∗ ∗

= ∗

=

1 1( ) ( )a a b a a b

e b

b

by the associative property, 

by the inverse property, 

by the identity property.

Checking the solution of  the 2nd equation is left for you to do.

To show uniqueness of  these solutions, we again assume that there exist  

two solutions, i.e. ∗ = ∗ =
1 2

anda x b a x b. Therefore a x a x∗ ∗
1 2
=  by  

substitution, and by the left cancellation law, we conclude that x x
1 2
= .  

Similarly, the uniqueness of  y is similarly proved.
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Some properties of  groups

a For any a, b ∈G,

i a b e a b∗ = ⇒ =
1

ii a b e b a∗ = ⇒ =
1

iii a b e b a e∗ ∗= ⇒ =

b For any a b G a b b a, , ( )∈ =
− − −

∗ ∗
1 1 1

c For any a G a a∈ =
− −, ( )1 1

a i
− −

− −

∗ = ⇒ ∗ ∗ = ∗

⇒ ∗ ∗ =

⇒ ∗ =

⇒ =

1 1

1 1

1

1

( )

( )

a b e a b b e b

a b b b

a e b

a b

 since b G∈
1

       by the associative and identity properties

       by the inverse property

       by the identity property

ii and iii are left as exercises for you to complete.

b  The inverse of  a b∗  is ( )a b∗
1. If  b a

− −1 1
∗  is the inverse of  a ∗ b,  

then it follows that ( ) ( )a b b a∗ ∗ ∗
− −1 1  must equal the identity e,  

and this is what we need to conrm. (b− ∗ a− ) ∗ (a ∗ b) must  

also equal e. (This latter part is left for you to do.).

( ) ( ) ( )a b b a a b b a

a e a

a a

e

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗

∗

− − − −

=

=

=

=

1 1 1 1

1

1

  by the associative property

        by the inverse property

        by the identity property

        by the inverse property

 The latter part is left for you do to.

  Hence, b a
− −1 1

∗  is the inverse of  a b∗  by Theorem  which we have  

proven above, i.e. the uniqueness of  the inverse.

c  The inverse of  a− is (a−)−. If  a is the inverse of  a− then it follows  

that a a e=
1
∗  = a ∗ a− which is true by the inverse property of  group G. 

Hence by the uniqueness of  inverse property, the result follows.

  Alternatively, since a a e=
1
∗ , using property a with a b

1 , ( )a b a
− − −

 
1 1 1

Example 

Given the group { , }G ∗  prove that if  a a e∗ =  for all a G∈ , then { , }G ∗  is Abelian.

To show that {G, ∗} is Abelian, we need to show 

that a ∗ b = b∗ a for all a, b ∈G.

For all a, b ∈G, (a ∗b) ∗ (a ∗b) = e, by the given.

a ∗ (b ∗ a)∗ b = e by the associative property.

a ∗ a ∗ (b ∗ a)∗ b = a ∗ e

e ∗ (b∗ a)∗b = a by the given and identity property.

(b ∗ a)∗ b ∗ b = a ∗ b by the identity property.

(b ∗ a)∗ e = a ∗ b by the given.

b ∗ a = a ∗ b by the identity property.

Use group properties and axioms to arrive 

at your results.



The ‘Universal Theory of Everything’ in Mathematics108

Exercise 3C

1 {G, ∗} contains exactly four elements: e, a, b, and c. State with  

reasons why a ∗ b cannot equal e, a or b, and hence must equal c

2 Prove that if  {G, ∗} is a group and a ∈G, then ( ) ( )a a
2 1 1 2− −

=

3 {G, #} is a group such that x x x x e# # # = , or = =
4 2

, ,x e y e

and x y y x# #=
3. 

a Show that

i y x x y# #=
3

ii y x y x# ( # )2 2
=

b Simplify ( # ) # ( # )x y x y
2

4 {G, } is an Abelian group and a a a a a
n

=      for n factors  

of  a, where a G∈  and n∈
+

Z . Prove by mathematical induction  

that = ( )n n n
a b a b  for all a G∈

5 Show that in any group {G, ∗}, if  ( )a b a b∗ ∗
2 2 2
=  then a b b a∗ ∗=

6 A set S is dened as the set of  all elements of  a group {G, } that  

commute with every element of  G, i.e. a S a x x a∈ ⇔ =   for  

every element x G∈ . Prove that { , }S   is also a group.

Subgroups

In question 6 of  Exercise 3C you proved that a subset S of  a set G

under the same binary operation as G was also a group. When a  

subset of  a group forms a group in its own right under the same  

binary operation, then we say that the subset is a subgroup of  the  

given group.

Denition

If  a non-empty subset H of  a set G is also a group  

under ∗, then {H, ∗} is a subgroup of  {G, ∗}.

An example of  an innite subgroup of  { }R,   is { , }Q . However,  

although ℚ+
⊂ ℝ, {ℚ+, +} is not a subgroup of  { }R,  . For nite sets,  

consider Example 7, the table for the symmetries of  a square, S. If  we  

consider a subset T of  the table with the elements T = {I, R

, R

2
, R

3
} 

we can determine if  this subset T of  S under the dened transformations  

is a subgroup of  {S, }.
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 I R
1

R
2

R
3

I I R


R
2

R
3

R
1

R


R
2

R
3

I

R
2

R
2

R
3

I R


R
3

R
3

I R


R
2

We can see from the table that {T, } is closed. In addition, T contains I,  

the identity element of  S. Each element in T has an inverse in T.  

We know that {S, } is associative, hence the operation will be 

associative with the elements of  the subset T. So we can conclude 

that {T, }forms a subgroup of  {S, } under 

Notice also that the order of  the subgroup is a factor of  the order of  the group.  

When looking for possible subgroups of  a given group, this fact can minimize  

the amount of  work in our search. In the next chapter we will prove this  

famous and important result, i.e. the order of  a subgroup divides the order  

of  the group.

Therefore, in order for a set to form a subgroup of  a given group under a  

given binary operation, it must also fulll the group axioms. Any subset  

of  the group under the given binary operation is associative, so this property  

does not need to be shown.

Theorem 2: Subgroup Theorem

A subset H of  a group {G, ∗} is a subgroup {H, ∗} if  and only if:

  H is closed under the binary operation ∗, i.e. 

a b H a b H, ∈ ⇒ ∈∗

 The identity e of  {G, ∗} is in H

 For all a H∈ , a H∈
1

Proof:

⇒:   Since {H, ∗} is a subgroup of  {G, ∗}, then all the group properties  

must hold.

⇐:   If  H G⊆  such that ,  and  hold, then we need only show the  

property of  associativity. Since all elements in H are also in G,  

and for all elements in G, ∗ is associative then {H, ∗} is also  

associative. 

A corollary of  the above theorem is that every group {G, ∗} has at  

least two subgroups: the group itself  and the group consisting only  

of  the identity.
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Denitions 

In many textbooks, the subgroup {{e},∗} is a proper subgroup. For 

the IB syllabus however, we consider it an improper subgroup.

If  {G, ∗} is a group, then the subgroup consisting of  G itself  and 

the subgroup consisting of  only the identity are the improper 

subgroups of  G. All other subgroups are proper subgroups. The 

subgroup {{e}, ∗} is also referred to as the trivial subgroup of  G

Example 

Show that the set S = {, 5, 7, } forms an Abelian group under ×
2

, and list all of  its 

non-trivial subgroups.

×


   

  5 7 

 5   7

 7   5

  7 5 

To show that { , }S ×12  forms a group, the 

following properties must hold:

Closure: It is evident from the table that  

for all ∈ × ∈
12

, ,a b S a b S

Identity: It is evident from the table that  is the 

identity, since for all ∈ × = = ×
12 12

, 1 1 .a S a a a

Inverse: For all a S∈  there exists a S∈
1  such that 

− −

× = = ×
1 1

12 12
1a a a a

a  5 7 

a−  5 7 

Each element is its own inverse.

Associativity: Multiplication mod(n) is 

associative.

The above conrms that { , }S ×12  is a group.

It is also an Abelian group, since for all 

∈ × = ×
12 12

, ,a b S a b b a. This is true since the 

Cayley table is symmetric about its main 

diagonal.

Construct a Cayley table.

Conrm all the group properties.

Determine if  there is symmetry about the 

main diagonal of  the Cayley table.

In addition to the set itself, the sets of  the  

non-trivial subgroups under the given operation 

are: {, 5}, {, 7}, {, }.

Since the order of  a subgroup must divide 

the order of  a group, we are looking only 

for subgroups of  order 1, 2 and 4.
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Example 

Let {H, ∗} and {K, ∗} be subgroups of  {G, ∗}.  

Prove that ∩ ∗{ , }H K  is a subgroup of  {G, ∗}.

H K∩  is i non-empty and ii a subset of  G. 

i  Since H and K are subgroups, then e H
G
∈  and 

e K
G
∈ , hence e

G
∈H ∩ K. H ∩ K is non-empty.

ii  Let x H K∈ ∩ . Then x H∈  and x K∈ .  

Since both H and K are subsets of  G, x G∈ , 

thus H K G∩ ⊆

First show that the conditions of  the 

denition of  subgroup are satised, that  

H ∩ K is a non-empty subset of  G.

For ∩ ∗{ , }H K  to be a subgroup of  {G, ∗} it must 

satisfy the group properties:

Closure, i.e. for all a b H K a b H K, ,∈ ∩ ∈ ∩∗ . 

Let a b H K, ∈ ∩ . Then ∈ ∈, and ,a b H a b K . 

Since both {H, ∗} and {K, ∗} are groups, a b H∗ ∈

and a b K∗ ∈ , thus a b H K∗ ∈ ∩

Identity: We have already proved in i that since H

and K are subgroups, e H
G
∈  and e K

G
∈ , hence 

e H K
G
∈ ∩

Inverse: For a H K∈ ∩ , ∈ ∈anda H a K

Hence 1
a H∈  and 1

a K∈ , since both {H, ∗} and 

{K, ∗} are subgroups. Hence, a H K∈ ∩
1 . By the 

Subgroup Theorem, therefore, { , }H K∩ ∗  is a 

subgroup of  {G, ∗}.

Show that {H ∩ K, ∗} satises the 

properties of  the Subgroup Theorem.

We will now prove a theorem with subgroups that might be helpful  

in showing that nite or innite subsets of  a group form a subgroup  

under the given binary operation.

Theorem 3

Let{G, ∗} be a nite or innite group and H a non-empty subset 

of  G. Then H is a subgroup of  G if  a b H∗ ∈
1  for a b H, ∈

Proof:

We are given that a b H a b H, ∈ ⇒ ∈∗
1

Identity: Letting b a a a H= ⇒ ∈∗
1 , hence e H∈

Inverse: Letting a = e and b = a, then e a H e a H, ∈ ⇒ ∈∗
1  from the given. Since 

e a a a H∗
− − −

= ∈
1 1 1

, . In the same way, b H∈
1 . Hence, for a b H, ∈ , a b H

 

∈
1 1
,

Closure: From the above, we know that if  a and b are in H then a and b− are in  

H too. Using the given, therefore, a b H∗ ( )− −

∈
1 1 , hence a ∗ b ∈ H
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The following is an example where you might use this theorem  

instead of  the Subgroup Theorem.

Example 

Prove: Given {H, +} where H = 4 7 ,x y x y+ ∈Z , {H, +} is a subgroup of  +{ , }Z

x y x y, ∈ ⇒ + ∈Z Z4 7 , hence H is a non-empty 

subset of  Z

First show that the condition of  the 

denition of  subgroup is satised, i.e. H is 

a non-empty subset of  Z

Let a b H, ∈ , a x y b x y= + = +4 7 4 71 1 2 2,

Since e = 0 x + 0 y = 0, for x ∈Z we have x – = –x To dene the inverse of  an element in a 

group, you must rst nd the identity.

Hence a + b –  = (4x

 + 7y


) – (4x

2
 + 7y

2
)  

= 4(x

 – x

2
) + 7( y


 – y

2
) ∈H

Use Theorem 3 and show that + ∈
1

a b 

Hence H is a subgroup of  {Z, +}. Write your conclusion.

Before we examine sucient conditions for proving that a set H is a  

subgroup of  G under the same binary operation, we need to dene  

what is meant by the order of  an element of  a group.

If  a G∈  under the binary operation ∗, then we can use the binary 

operation on a itself, i.e. a ∗ a. We can do this as many times as we need, 

e.g. ∗  ∗ ∗ =

timesn

n

a a a a… . We can now formulate the following denition  

and theorem.

Denition

Let a G∈  where {G, ∗} is a group. Then a is said to have nite

order if  a e
n

  for some n∈
+

Z . The order of  a is the least such n. 

If  no such n exists, the element a has innite order

Theorem 4

Let a be an element of  a nite group {G, ∗}. Then there exists a 

smallest positive integer n such that a e
n

 , and n is the order of  a
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Proof:

The set of  all possible powers of  a is an innite set. Since G is nite,  

however, the set of  possible powers of  a cannot all be dierent.  

Hence, if  r and s are two positive integers with r < s such that a a e
r s

= = ,  

then, (for convenience sake we will omit ∗)

− −

= ⇒ = =
r s s r r r

a a a a a a e . Hence, there is at least one n = s − r, such that a e
n

=

We have proven the existence of  n, and you may want to prove its  

uniqueness as an exercise.

Theorem 5

If  H is a non-empty subset of  a nite group {G, ∗} then {H, ∗} is 

a subgroup if  and only if, for all a b H a b H, ,∈ ∈∗ . In other words, 

H need only be closed.

Proof:

Identity: a b H a H∗ ∈ ⇒ ∈
2  for b = a. Now, b a a H= ⇒ ∈

2 3 .  

Continuing in this way, let the order of  a be n, hence a e
n

= , and e H∈

Inverse: Consider an 1. Since a a a e aa
n n n− −

= = =
1 1, then an− is the inverse of  a,  

and a H
n


1

, a H
1

The condition of  closure is given in the theorem, hence { , }H ∗  is a subgroup  

by the Subgroup Theorem.

This is a very useful theorem, since when you are asked to show that a subset  

of  a nite group is a subgroup, you need only show the property of  closure!  

This is particularly useful when you have a Cayley table to work from.

Exercise 3D

1 List the proper subgroups of  the given groups.

a  The set containing the sets Ø, A = {a}, B = {b}, and C = {a, b}  

under the operation symmetric dierence, Δ

b  The set of  functions under function composition, where  

p (x) = x, q x
x

( ) = −1
1

2
, 

1

1 2
( )

x

x

r x = , and s x

x

( ) =
1

2 2

c The symmetry group of  the rectangle.

d The set {2, 4, 8, 0, 4, 6} under ×
8

e { , }Z 6 6

2 The set S = {1, 2, 4, 7, 8, 11, 13, 14} forms a group under the operation ×
15

a Write down the inverses and orders of  each element.

b Given that the set {, 2, a, b} is a subgroup of  S, nd a and b

c  Find one of  the subgroups of  S that also has four elements  

and includes 4 but not 2.
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3 A group G under the binary operation ∗ has distinct elements  

{e, a, b, c, …}, where e is the identity element.

a If  a ∗ b = e and b∗b = a, prove the set {e, a, b} forms a subgroup of  G under ∗

b If  a ∗ a = b, b ∗ b = c, c ∗ c = a, then prove the set {e, a, b, c} does not form a  

subgroup of  G under ∗

4 Let F be the group of  all real-valued functions with domain ℝ under  

addition of  functions. Prove that the subset of  F consisting of  those  

functions in F that are dierentiable forms a subgroup.

5 A group G that contains more than ten elements contains an element  

q of  order 10. Prove that {q, q2, q3, …, q10} is a subgroup of  G. 

6 Let {G, ∗} be an Abelian group. Prove that if  H is the set of  all  

elements x in G satisfying the equation x2 = e, then H is a subgroup.

7 Let {G, ∗} be a group, and a is a xed element in G. Prove that  

if  H is the subset of  G whose elements commute with a, i.e.  

{ }= ∈ =H x G xa ax , then H is a subgroup of  {G, ∗}.

3.3 Cyclic groups

In Theorem 4 we saw that if  a is an element of  a nite group G then the  

powers of  a cannot all be dierent. Consider the subgroup of  the symmetries  

of  a square group consisting of  the rotations symmetries only, and its  

Cayley table.

I: identity (rotation of  0° or 360° in either direction about the center).

R

: rotation through 90° anti-clockwise

R
2
: rotation through 80° anti-clockwise

R
3
: rotation through 270° anti-clockwise

 I R
1

R
2

R
3

I I R


R
2

R
3

R
1

R


R
2

R
3

I

R
2

R
2

R
3

I R


R
3

R
3

I R


R
2

We see that R R R R1 1 1

2

2 = = ; R R R R R1 1 1 1

3

3  = = ; R R R R R I
1 1 1 1 1

4
   = = .  

As we proceed with higher powers, we obtain repetitions of  the elements,  

e.g. R R R R R R R R I R R
1 1 1 1 1 1

5

1

4

1 1 1
     = = = =
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We can therefore rewrite the table using powers of  R

:

 I R
1

R
1

2
R

1

3

I I R


2

1
R

3

1
R

R
1

R


R
1

2
R

1

3
I

R
1

2
R

1

2
R

1

3
I R



R
1

3
R

1

3
I R


R

1

2

This subgroup is an example of  a nite cyclic group, because all of  the  

elements of  the group can be written as a power of  a single element.  

We say that the subgroup is generated by the element R


Denitions

A group whose elements can be expressed in the form  

{e, a, a2, a3, ...., an−} is called a cyclic group of  order n and is 

denoted by C
n
. The element a is said to generate the group and is 

described as the generator of  the group. It follows therefore that a 

group of  order n is cyclic if  an only if  it contains an element of  

order n

A cyclic group can be a nite group, as seen above, or an innite group. 

Recently it was discovered that the sequence of pitches which forms a 

musical melody can be transposed (translation) or inverted (reection) and 

can be modeled using a cyclic group of order 12. This allows for the creation 

of different melodies by assigning functions to the transpositions and 

inversions.

C C# D Eb E F F# G Ab A Bb B

0  2 3 4 5 6 7 8 9 0 

C C#/D

b
D

D
#
/E

b
E

F
F#/GbG

G#
/A

b
A

A
#
/B

b
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Example 

a  Show that the group { \{ }, } 5 50 ×  forms a cyclic group, and nd its generator(s).

b Find all the possible subgroups.

a 
×


   

  2 3 4

 2 4  3

 3  4 2

 4 3 2 

Construct the Cayley Table. Since we are 

told that it is a group we do not need to test 

the group properties.

22 = 4, 23 = 3, 24 =  hence the group can be 

expressed as {, 2, 22, 23} and is therefore cyclic.

Determine if  the powers of  an element 

generate all elements of  the group.

32 = 4; 33 = 2, and the group can be expressed as 

{, 3, 32, 33}.

2 and 3 are generators.

Determine if  any other elements also 

generate the elements of  the group.

b  From the table it is evident that {, 4} forms a 

subgroup since it is closed,  is the identity,  

4 is a self-inverse, and associativity is  

implied.

Since the order of  a subgroup must divide 

the order of  a group, we look only for 

subgroups of  order 2. 

Test the properties for subgroup.

Notice in Example 2 that 3 is the inverse of 2. Since 2 was a generator, 

its inverse will also be a generator. The following is left as a proof for the 

student, and is one of the exercises at the end of this section (See Exercise 3E question 2).

Theorem 6

In a nite group {G, ∗}, the order of  an element a is the same as 

the order of  its inverse a−. (The proof  is left as an exercise for you 

to complete.)

We will now establish some properties of  cyclic groups.

Theorem 7

Every cyclic group is Abelian.

Proof:

Let C
n
 be a cyclic group and let a be a generator of  C

n
 so that  

{ }= ∈n

n
C a n Z . Let x and y be two elements of  C

n
. Hence, there exists  

integers p and q such that x = a p and y = a q. Then, xy = a paq = a p + q = a q + p = a q a p = yx.  

Hence, C is Abelian.
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We now know that if  we have a cyclic group it is also Abelian, but the  

converse is not necessarily true.

Before discussing subgroups of  cyclic groups, it is convenient to prove  

the following theorem. 

Theorem 8

Let {G, ∗} be any group and let a G∈ . Then {H, ∗} where 

H a n
n= ∈{ }Z  is the smallest subgroup of  {G, ∗} that contains 

{a}, i.e. every subgroup containing {a} contains H

Proof:

Checking the three conditions for subgroup, since a ra s = a r + s, ,r s ∈ Z,  

H is closed. Since 0
, 0 ,a e e H= ∈ ∈Z , and since for a H a H

r r
∈ ∈, , and  

a a a a e
r r r r− −

  , every element in H has an inverse in H. Since any subgroup  

of  {G, ∗} that contains {a} must contain H, H is therefore the smallest  

subgroup of  G containing {a}

Denition

The subgroup of  {G, ∗}, { }= ∈n
H a n Z , is the cyclic subgroup of  

{G, ∗} generated by a

Theorem 9

A subgroup of  a cyclic group is cyclic.

Proof:

(This proof  is placed here to enhance understanding; it is not  

required for examination purposes.)

Let C be a cyclic group generated by a and let H  be a subgroup of  C.  

If  H = {e}, then it is cyclic. If  H ≠ {e}, then a H n
n
∈ ∈

+

, Z . Let m be  

the smallest integer in Z+ such that a H
m
∈

For c a
m

=  to generate H, we must show that every b H∈  is a power  

of  c. Since b H∈  and H C⊆ , =
n

b a  for some n. We can express n

as mq + r, for 0 ≤ r < m (Division Algorithm Theorem).  

Then +

= = ( )n mq r m q r
a a a a , or a a a

r m q n
 ( )

Since a H a H
n m
∈ ∈,  and H is a group, both (am) q and an are in H.  

Hence, ( )a a H
m q n

∈ , i.e. a H
r
∈ . Since m was the smallest positive  

integer such that a H
m
∈  and 0 ≤ r < m, we must have r = 0. Hence  

n = qm and b a a cn m q q
= = =( ) . Hence b is a power of  c. 

Division Algorithm 

Theorem: If m is a 

positive integer and 

n is any integer then 

there exist unique 

integers q and r such 

that n mq r= +  and 

≤ <0 r m
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Example 

A cyclic group C consists of  the following elements: e x x x x x x x, , , , , , ,
2 3 4 5 6 7. 

Determine:

a the elements that are generators of  C, and 

b the orders of  the remaining elements.

a x 8 = e, (x 3)8 = e, (x 5)8 = e, and (x7)8 = e are the 

smallest such powers to equal e. Hence these 

elements are all generators of  C

Since the order of  C is 8, we need to look 

for elements such that the least power of  

such an element to equal e is 8,  

i.e. (x n) 8 = e, 1 ≤ n ≤ 7. This occurs when 

n and 8 are relatively prime.

b Since (x2)4, (x4)2, and (x6)4 all equal e, the 

orders of  these elements are respectively  

4, 2 and 4. Hence, they cannot generate C. 

Since the powers of  the elements 2, 4, and 

6 are factors of  8 or factors of  its multiples, 

the elements with these powers cannot 

generate C.

At the beginning of  this section on cyclic groups, we saw that R

,  

rotation through 90° anti-clockwise, was a generator of  the subgroup  

of  rotation symmetries of  the square group.  Since the order of  an  

element of  a nite group is the same as the order of  the cyclic  

subgroup generated by the element, and the order of  a subgroup  

must divide the order of  a group, we can state the following theorem.

Theorem 10: Lagrange’s Corollary

The order of  an element of  a nite group divides the order of  the group.

Theorem 0 follows directly from Lagrange’s Theorem, which we will  

study and prove in Chapter 4.

Exercise 3E

1 Show that the group {Z
10

, +
10

} is generated by the number 7.

2 Prove by mathematical induction:

a For all { , }a G∈ ∗ , − − − −
∗ ∗ ∗ = ∗ ∗ ∗ ≥… …

1 1 1 1

1 2 1 1( ) , 2
n n n

a a a a a a n

b For all a G∈{ , }∗ , ( ) ( ) ,a a n
n n− −

= ≥
1 1 2. 

c  Hence, or otherwise, prove that the order of  an element is equal  

to the order of  its inverse.



Chapter 3 119

3 { }× = ∈ ∈Z Z Z Z( , ) ,
n m n m

a b a b  forms a group under the binary  

operation ∗ dened as (a
1
, b

1
) ∗ (a

2
, b

2
) = (a

1 
+

n
a

2
, b

1
 +

m 
b

2
), where  

+
n
 and +

m
 denote additions of  integers modulo n and m, respectively.

a State the order of  × ∗4 5( , )Z Z , and evaluate (3, 2) ∗ (, 4).

b Show that { , )Z Z2 3× ∗  is cyclic, and list any generators.

c Determine how many elements of  × ∗2 4{ , }Z Z  have order 4.

4 Show that

a  the nth roots of  unity can be expressed in the form { , , , , }1 2 1
α α α…

n

where α is the complex root with the smallest positive principal  

argument

b the nth roots of  unity form a cyclic group under multiplication.

5 a Prove that if  a group G has order p, where p is prime, then G is cyclic.

 b  Prove that if  a group G has order pq, ∈p q , then every  

proper subgroup of  G is cyclic. 

 c Find the number of  generators of  the cyclic group Z
pq

Review exercise
EXAM-STYLE QUESTIONS

1 a  Show that the set of  real numbers, excluding a single number,  

forms a group under the operation ∗ dened as a ∗ b = a + b – ab,  

and determine the single number which must be excluded  

from R

 b Hence, solve the equation 5 ∗ x = 12.

2 H is a subgroup of  G and R is a relation dened on G such that for  

all ∈ ⇔ ∈
1

, ,a b G aRb ab H . Show that R is an equivalence relation.

3 Let x, a, b and c be elements of  a group with identity element e. 

 a Solve for x: axb = c

 b Solve simultaneously for x: ax2 = b and x3 = e

4 A group G with identity element e contains elements x and y such  

that 2
yx x y=  and y e

3
=

 Prove:

 a y xy x
2 2 4

= b x x
8
=
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5 a  Given that f x x f x x f x
x

1 2 31
1

( ) , ( ) , ( )= = − = ,  

obtain expressions for f x f x4 5( ), ( ), and f
6
(x) if:

f x f f x4 2 3( ) ( )( ) ;=  f x f f x5 3 2( ) ( )( )=  ; f x f f x6 3 4( ) ( )( )= 

 b  Given that G = { , , , , , }f f f f f f1 2 3 4 5 6  forms a group with respect  

to function composition, construct its Cayley table.

 c Determine the order of  each element of  the group.

 d Find a subgroup of  G containing only three elements.

6 Let {G, ∗} be a group and a is a xed element of  G. Dene a function  

→:f G G  by f x a x( ) = ∗ , for every x G . Prove that f is bijective.

7 For the group { Z
12 12
, }:

a Find the order of  the elements 4, 5 and 9.

b Show that the group is cyclic, and nd all possible generators.

8 Let min (x, y) be the minimum value of  two numbers x and y.  

The operation # is dened on the set of  negative integers by  

x # y = min (x, y). (min(x, x) = x)

a Show that # is commutative.

b Determine which of  the group axioms are satised.

9 Let {G, ∗} be a group with subgroups {H, ∗} and {K, ∗}. Prove that  

{ , }H K∪ ∗  is a subgroup of  {G, ∗} if  and only if  either H K⊆  or K H⊆

10 Find the order of  a group generated by two elements a and b

if  a3 = b2 = (ab)2 = e, and nd all subgroups of  the group.

11 Construct a Latin Square of  order 6 which has an identity element 

and all other elements have order 2, and prove that this Latin Square 

does not represent a group.

12 Let {H, ∗} be a subgroup of  {G, ∗}. Let a G a H∈ ∉, , and 

aH ah h H= ∈{ }
i Show that ∩ = ∅H aH

ii Show that ∪H aH  is a subgroup of  G

iii  Show that the number of  elements in ∪H aH  is twice  

the number of  elements of  H
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Chapter  summary
Denitions

A group {G, ∗} is an Abelian group if  G is commutative under ∗,  

i.e. for all a, b ∈ G, a ∗ b = b ∗ a.

The order |G| of  a group {G, ∗} is the number of  elements in the group.  

If  a group has an innite number of  elements, it is said to have innite order,  

i.e. |G| = ∞

A Latin Square is a square array of  n2 compartments such that each element  

or symbol occurs exactly once in each row and column.

Symmetry groups are groups of  transformations of  plane gures that preserve 

symmetrical properties.

If  a non-empty subset H of  a group {G, ∗} is also a group under ∗,  

then {H, ∗} is a subgroup of  {G, ∗}.

If  {G, ∗} is a group, then the subgroup consisting of  G itself  and the subgroup  

consisting of  only the identity are the improper subgroups of  G. All other  

subgroups are proper subgroups. The subgroup {{e}, ∗} is also referred to  

as the trivial subgroup of  G

Let a ∈ G where {G, ∗} is a group. Then a is said to have nite order 

if  an = e for some n ∈Z+. The order of  a is the least such n. If  no such n exists,  

the element a has innite order

The set G with a binary operation ∗ is called a group if  the following four axioms 

(properties) hold:

1 Closure: For all a, b ∈ G , a ∗ b ∈ G

2 Identity: For all a ∈ G, there exists an element e ∈ G such that  

a ∗ e = a = e ∗ a

3 Inverse: For each a ∈ G  there exists a−1
∈ G such that  

a ∗ a-1 = e = a−1
∗ a

4 Associativity: For all a, b, c, ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c

The group G with binary operation ∗ is denoted by {G, ∗} 

Integers modulo n and modular arithmetic

● Z
n
 = {0, , 2, …, n − }, n ∈ N, n ≥ 2

● +
n
 denotes addition (mod n), and a +

n
b is the remainder when a + b is  

divided by n, i.e. a +
n

b = a + b (mod n).

● ×
n
 denotes multiplication (mod n), and a ×

n
 b is the remainder when  

a × b is divided by n, i.e. a ×
n
 b = ab (mod n).
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Properties and theorems of groups and subgroups

 Cancellation laws:  Given a group {G, ∗} and a, b, c ∈ G:

 i the right cancellation law holds, i.e. a ∗ c = b ∗ c ⇒ a = b and 

 ii the left cancellation law holds, i.e. c ∗ a = c ∗ b ⇒ a = b.

2 A group {G, ∗} has the following properties:

● The identity element for a group is unique.

● For any a ∈G, the inverse of  a, a−, is unique.

● For any a, b ∈G, the equations a ∗ x = b and y ∗ a = b, x, y ∈G, have unique  

solutions in G. (For nite groups, this means that each element would appear  

only once in every row and column of  its operation table.)

● For any a, b ∈G:

●❍ a ∗ b = e ⇒ a = b−

●❍ a ∗ b = e ⇒ b = a−

●❍ a ∗ b = e ⇒ b ∗ a = e

● For any a, b ∈G, (a ∗ b)− = b−
∗ a−

● For any a ∈G, (a−)− = a

3 Subgroup Theorem: A subset H of  a group {G, ∗} is a subgroup  

{H, ∗} if  and only if:

 1 H is closed under the binary operation ∗, i.e. a, b ∈H ⇒ a ∗ b ∈H

 2 The identity element e of  G is in H

 3  For all a ∈H, a−1 
∈H.  

Let {G, ∗} be a nite or innite group and H a non-empty subset of  G.  

Then H is a subgroup of  G if  and only if  a ∗ b−1 
∈H for a, b ∈H

Theorem: Let a be an element of  a nite group {G, ∗}. Then a has nite order.

Theorem: If  H is a non-empty subset of  a nite group {G, ∗} then {H, ∗}  

is a subgroup if  and only if, for all a, b ∈H, a ∗ b ∈H. 

A group whose elements can be expressed in the form {e, a, a2, a3, …, an−}  

is called a cyclic group of  order n and is denoted by C
n
. The element a is a  

generator of  the group. A group of  order n is cyclic if  an only if  it  

contains an element of  order n

Theorem: In a group {G, ∗} the order of  an element a is the same as the  

order of  its inverse a−. 

Theorem: Every cyclic group is Abelian.
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Theorem: Let {G, ∗} be any group and let a ∈G. Then H = {an |n ∈Z }  

is the smallest subgroup of  {G, ∗} that contains a, i.e., every subgroup  

containing a contains H

The subgroup of  {G, ∗} above, H = {an |n ∈Z }, is the cyclic subgroup

of  {G, ∗} generated by a

Theorem: A subgroup of  a cyclic group is cyclic.

Theorem: (Lagrange’s Corollary): The order of  an element of  a nite group  

divides the order of  the group.
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The classication 
of groups4

CHAPTER OBJECTIVES:

8.10 Permutations under composition of permutations; cycle notation for 

permutations; result that every permutation can be written as a composition  

of disjoint cycles.

8.11 Denition and examples of left and right cosets of a subgroup of a group; 

Lagrange’s theorem; use and proof of the result that the order of a nite group 

is divisible by the order of any element (Corollary to Lagrange’s theorem).

8.12 Denition of group homomorphism; denition of a kernel of a homomorphism; 

proof that the kernel and range of a homomorphism are subgroups; proof of 

homomorphism properties for identities and inverses; isomorphism of groups; 

the order of an element is unchanged by an isomorphism.

Before you start

1 Find the partition of  a set induced by  

an equivalence relation, e.g. if

A = −{ }5 3 2 6 20
1

5
, , , , ,π

and the equivalence relation R on A

is dened by aRb
a

b
⇔ ∈, nd the 

partition of  A induced by R.  

The partition of  A induced by R is

{ } { } { }π⎧ ⎫
⎨ ⎬
⎩ ⎭

1

5
5, 20 , 3, , 6 , 2

1 Find the partition of  the set induced by 

the given equivalence relations:

a For a, b ∈ ℤ, aRb ⇔ 2|(a2 + b2),  

i.e. 2 divides (a2 + b2).

b R is an equivalence relation on  

ℤ × ℤ, such that for all  

(a, b), (c, d ) ∈ ℤ × ℤ,  

(a, b)R(c, d ) ⇔ a = c. Describe how the 

equivalence relation R partitions ℤ × ℤ

c The equivalence relation R on  

S = {1, 2, 3, …, 10} is dened as  

xRy ⇔ x ≡ y(mod 4). Find the partition 

of  S induced by R
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2 Determine if  a function f:A → B is 

surjective, injective, or both, e.g. let 

A = ℝ\{−2}, and f  : A → ℝ such that 

f x
x

x
( ) =

+

3

2

  Determine whether or not f is bijective.  

For f to be bijective, it must be (i) injective 

and (ii) surjective. 

 (i) To show that f is injective,

 Method I

 We must show that f  (a) = f  (b) ⇒ a = b. 

 Hence, 

3

2

3

2
3 2 3 2

a

a

b

b
a b b a

+ +

= ⇒ + = +( ) ( )

  ⇒ 6a = 6b

  ⇒ a = b

 or

 Method II

  We must show that f is either strictly 

increasing or strictly decreasing on its 

domain.

d
x

x

dx x

3

2 6

2 2

+

⎛

⎝
⎜

⎞

⎠
⎟

+
=

( )
 For all x ≠ –2, 

dy

dx
> 0,

 therefore f is strictly increasing.

 Hence f is injective.

 (ii)  To show that f is surjective, we must  

 show that for all b ∈ ℝ there exists an 

a ∈ A such that f  (a) = b. Hence,

3

2
3 2

a

a
b a b a

+

= ⇒ = +( )

  ⇒ 3a – ba = 2b

  ⇒ a (3 – b) = 3b

⇒ =a
b

b

3

3

  When b = 3 it is not the image of  any 

element in A, so f   is not surjective.

 Therefore f  is not bijective.

2 a  Let A = {x|x ∈ ℝ, x ≥ 0} and  

let f  : A → A be dened as f x
x

x
( ) =

+

+

3 5

5 3

2

2

  Determine if  f is bijective.

b  Given that f  : ℝ2
→ ℝ2 such that  

f  (a, b) = (2a + b, a − 2b), show that f  is 

bijective, and nd its inverse.

   Injective and surjective functions can be 

represented graphically, as shown below. 

   In Figure 1, since the function is steadily 

increasing over its entire domain, the 

function is injective. Also, if  you imagine 

a horizontal line drawn anywhere 

through the graph, the function will 

intersect such a line at only one point.

y

x

      Figure 1

   Imagine that the graph in Figure 2 

continues to innity at both ends. Then 

any horizontal line drawn through the 

graph will intersect it in at least one 

point. This function is surjective.

x

y

       Figure 2
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Group structures

The entire theory of  groups originally grew out of  an understanding  

of  permutations. You are familiar with permutations as  

arrangements of  a given nite set. The search for solutions of  

polynomial equations led the French mathematician Lagrange and 

others, in the late 8th century, to think of  permutations as bijections 

from a nite set onto itself. However it was the French  

mathematician Augustin-Louis Cauchy who developed in detail the 

basic theorems of  permutation theory and introduced the standard 

notation we still use today. 

In addition to permutation groups, we will also focus on  

isomorphisms and homomorphisms, which are functions between 

groups that preserve certain group structures. The German 

mathematician Emmy Noether rst treated the ideas on group 

structures in a paper published in 927. She is considered one of  the 

most famous mathematicians of  our modern era.

4. Permutation groups

When you shue a deck of 52 playing cards you are essentially 

rearranging all of the cards, or forming permutations on the set of cards. 

A permutation is therefore essentially a bijection of a set onto itself.
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Denition

A permutation of a non-empty nite set A is a bijection from A to A

If  we consider the set of  the three natural numbers A = {, 2, 3}  

and form all of  the possible permutations from A onto itself, one possible  

mapping is  → , 2 → 2, 3 → 3. We can illustrate this  

permutation in the following way:

p
1

1 2 3

1 2 3
=

⎛

⎝
⎜ . This mapping leaves all elements unchanged.

Another possible mapping is  → 3, 2 → 2, 3 →  or 2

1 2 3

3 2 1
p =

How many possible mappings are there from A to itself ? You should  

know the answer from your work on permutations in the core book: 3!, or 6.

Let us now complete the other four permutations:

p
3

1 2 3

1 3 2
=

⎛

⎝
⎜ , 4

2 1 3
p = , p

5

1 2 3

3 1 2
=

⎛

⎝
⎜ , 6

1 2 3

2 3 1
p =

We perform operations on permutations in the same way as  

function composition or transformations on a set of  isometries.  

In other words, if  we want the operation p
3   
p

4
, then just as in the set  

of  isometries, this means p
4
 followed by p

3
. 

p
4
 maps  to 2, and p

3
 maps 2 to 3, hence p

3  
p

4
 maps  to 3.

p
4
 maps 2 to , and p

3
 maps  to , hence p

3  
p

4
 maps 2 to .

p
4
 maps 3 to 3, and p

3
 maps 3 to 2, hence p

3  
p

4
 maps 3 to 2.

Therefore, p p
3 4

1 2 3

3 1 2
=

⎛

⎝
⎜

⎞

⎠
⎟, which is p

5

Now consider p
4 
p

3
. This means p

3
 followed by p

4

p
3
 maps  to , and p

4
 maps  to 2, hence p

4  
p

3
 maps  to 2.

p
3
 maps 2 to 3, and p

4
 maps 3 to 3, hence p

4  
p

3 
maps 2 to 3.

p
3
 maps 3 to 2, and p

4
 maps 2 to , hence p

4  
p

3
 maps 3 to .

Therefore, 3 4
2 3 1

p p =
⎝ ⎠

, which is p
6

We see already in this case that composition of  permutations, just as in 

function composition, is not commutative, since p
3 
p

4
≠ p

4 
p

3.

We will now determine whether the set of  permutations on three  

elements, S
3
 = {p


, p

2
, p

3
, p

4
, p

5
, p

6
}, forms a group under composition of   

permutations. Composition of  permutations, just like composition of   

functions, is associative.

The set would need an identity, and clearly p

 is the identity.
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We now consider the inverses of  the elements. Since a permutation is  

a bijection from a set onto itself, we know that all elements have inverses.

Consider 
2

1 2 3

3 2 1
p = . Since p

2 
maps  to 3, p

2

1 would map 3 to .

In the same way, p
2

1 would map 2 to 2, and  to 3. Hence, 1

2

1 2 3

3 2 1
p =

which means that p
2
 is its own inverse. Finding the rest of  the inverses is left as an exercise 

before you see the answers in Example .

Example 

Show that the set S
3
 of  all permutations of  the set {, 2, 3} forms a group under composition 

of  permutations. The denitions of  p

, p

2
, etc. are those used on the previous page.

 p
1

p
2

p
3

p
4

p
5

p
6

p
1

p


p
2

p
3

p
4

p
5

p
6

p
2

p
2

p


p
5

p
6

p
3

p
4

p
3

p
3

p
6

p


p
5

p
4

p
2

p
4

p
4

p
5

p
6

p


p
2

p
3

p
5

p
5

p
4

p
2

p
3

p
6

p


p
6

p
6

p
3

p
4

p
2

p


p
5

Closure: It is evident that the set under 

composition of  permutations is closed,  

i.e. for all p
i 
, p

j
∈S

3
, p

i 
p

j
∈S

3

Identity: p

is the identity, since for all  

p
i
∈S

3
, p

i 
p


 = p

 
p

i
 = p

i 

Inverse: For all p
i
∈S

3 
there exists a p

j
∈ S

3 

such that p
i 
p

j
 = p

j 
p

i
 = p



p
i

p


p
2

p
3

p
4

p
5

p
6

1

i
p p


p

2
p

3
p

4
p

6
p

5

Composition of  permutations is associative.

Hence, S
3
 is a group under composition of  

permutations.

Work out all the permutations and put the 

results in a Cayley table.

Ascertain the group properties.

Composition of  functions is associative.

Is a permutation of  a set A consisting of  four elements also a group?  

We know from our core work with permutations that this set would  

consist of  4!, or 24 elements. It would not be practical to set up a  

Cayley table for S
4
, so instead we will prove the following theorem.
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Theorem 1

Let A be a non-empty set of  n elements, and let S
n
 be the  

set of  all permutations of  A. Then S
n
 forms a group under  

composition of  permutations, i.e. {S
n
, }forms a group.

Proof:

We shall examine the group properties.

Closure: Similar to function composition, the composition of  two  

permutations yields a permutation, so S
n
 is closed.

Identity: The identity permutation is 
…

=

…

1

1 2

1 2

n
p

n
. 

The identity 

permutation is 

the identity function 

f(x) = x
Inverse: Since a permutation is a bijection, for any permutation  

p ∈ S
n
 there is an inverse permutation p−

∈ S
n

Associativity: Just as function composition, the permutation  

composition is associative.

Therefore, {S
n
, }forms a group.

Denition

Let A be the nite set {, 2, 3, …, n}. The group of  all 

permutations of  A is called the symmetric group on n elements 

and is denoted by S
n

Example 

Given x ∈ S
6
, x =

⎛

⎝
⎜
1 2 3 4 5 6

3 1 2 4 6 5
, nd

a the inverse 

b the order of  x.

a x =
⎛

⎝
⎜

1
1 2 3 4 5 6

2 3 1 4 6 5

x
2

1 2 3 4 5 6

2 3 1 4 5 6
=

⎛

⎝
⎜ ; 

x
3

1 2 3 4 5 6

1 2 3 4 6 5
=

⎛

⎝
⎜ ; x 4

1 2 3 4 5 6

3 1 2 4 5 6
=

⎛

⎝
⎜ ;

x
5

1 2 3 4 5 6

2 3 1 4 6 5
=

⎛

⎝
⎜ ; x 6

1 2 3 4 5 6

1 2 3 4 5 6
=

⎛

⎝
⎜

  Hence the order of  x is 6, since x 6 = p
 
and  

x, x 2, x 3, x 4, x 5 ≠ p


Since x maps  → 3, 2 → ,  

3 → 2, 4 → 4, 5 → 6, 6 → 5, 

x− maps 3 → ,  → 2, 2 → 3, 

4 → 4, 6 → 5, 5 → 6

Find the rst power of  x that 

equals e, i.e., the identity 

permutation p
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Exercise 4A

1 Show that the subset of  permutations of  S
4
, {e, x, y, z} forms a  

group, where z = xy and

1 2 3 4

1 2 3 4
e = , 

1 2 3 4

3 4 2 1
x = , 

1 2 3 4

2 1 4 3
y =

2 Determine the order of  the smallest subgroup of  S
5
 containing  

the element 1 2 3 4 5

1 4 3 5 2

⎛

⎝
⎜

3 Find a cyclic subgroup of  {S
3
, } of  order 3, and state a generator  

of  this subgroup.

4 The following are permutations on the set S
5

1 2 3 4 5

5 3 4 1 2
= , 

1 2 3 4 5

2 3 4 5 1
= , 

1 2 3 4 5

5 3 2 4 1
=

a Find the permutations:

i στ ii τσ iii σ
2
τ iv συ

−1
v (συ)−1 

vi υ
−1
τυ

b Solve for x in the following equations:

i σx = τ ii σxτ = υ.

Permutations and cycle form

Another way of  writing a permutation is in cycle form. Using the 

elements of  S
3
, since p

2

1 2 3

3 2 1
=

⎛

⎝
⎜ , p

2 
can be expressed as a cycle 

using the notation (3). This means  is mapped onto 3 and since 3 is  

mapped onto , the cycle ends. Since 2 is mapped onto 2, we can write  

this as (2). We can then write the permutation as a product of  cycles.  

In other words, p
2
 = (3)(2) or (2)(3). The single element that is in  

brackets is mapped onto itself, i.e. the element that is invariant under the 

mapping is put in its own brackets. The cycle notation for the identity 

element of  S
3
, p


, is ()(2)(3); in other words, each element is mapped 

onto itself. For simplicity of  notation, the invariant element(s) will  

be omitted. The identity, therefore, would be represented simply as (),  

and for p
2
 its cycle form is simply (3).

Let’s now write the other permutations of  S
3
 using cycle notation.

p
3

1 2 3

1 3 2
=

⎛

⎝
⎜

⎞

⎠
⎟, or  p

3
 = (23).  

Using cycle notation, (23) means that  maps onto itself.
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p
4

1 2 3

2 1 3
=

⎛

⎝
⎜ , or  p

4
 = (2). 

Again, this means that 3 is invariant and maps onto itself.

p
5

1 2 3

3 1 2
=

⎛

⎝
⎜ , or p

5
 = (32); p

6

1 2 3

2 3 1
=

⎛

⎝
⎜ , or p

6
 = (23).

We will now write the element x from Example 2 using cycle notation.

⎛ ⎞
= =⎜ ⎟

⎝ ⎠

1 2 3 4 5 6
(132)(4)(56)

3 1 2 4 6 5
x , or (32)(56). Since the 

cycles are disjoint, we can also write this as x = (56)(32),  

i.e. whenever the cycles are disjoint, the cycle form is commutative.

We can also write the inverse of  x in cycle notation.

⎛ ⎞
= =⎜ ⎟

⎝ ⎠

1
1 2 3 4 5 6

(123)(56)
2 3 1 4 6 5

x

Again, since the cycles are disjoint, we can also write x − = (56)(23).

Notice that to nd the inverse of  an element in cycle notation,  

we simply reverse the integers in the cycle. For example, inverting  

the integers in (32) gives us (23), since it is understood that the  

number at the end of  the cycle is the same number as at the beginning  

of  the cycle. Thus (32) is  → 3 → 2 →  and its reverse is  → 2 → 3 → .  

The cycle (56), i.e. 5 → 6 → 5, is the same as (65), i.e. 6 → 5 → 6.

Let us now consider a permutation and write the permutation and its  

inverse in cycle form.

Let σ =
⎛

⎝
⎜
1 2 3 4 5 6 7 8 9 10

5 1 6 8 4 10 7 2 9 3

We see that  → 5 → 4 → 8 → 2 → , which gives us the cycle (5482).  

Then starting with the smallest number that we have yet to use, 3, we  

have 3 → 6 → 0 → 3, giving us the cycle (3 6 0). (Notice that we leave  

spaces in this cycle between the numbers to avoid confusion since  

we have a two-digit number in our cycle.) The only remaining numbers are  

7 and 9, which are invariant.

Hence, σ = (5482)(3 6 0), or σ = (3 6 0)(5482). Using cycle notation,  

let’s now nd the inverse of  σ. Reversing the numbers in the cycle  

after the rst number we obtain (2845)(3 0 6). In other words,  

 → 2 → 8 → 4 → 5 →  and 3 → 0 → 6 → 3. Since 7 and 9 are not  

present in our cycles, they are invariant.

Hence, σ =
⎛

⎝
⎜

1
1 2 3 4 5 6 7 8 9 10

2 8 10 5 1 3 7 4 9 6
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How can we also use cycles to nd the order of  a permutation? We can  

dene the length of a cycle as the number of  moves required to come  

full cycle, i.e. the cycle (23) requires 3 moves to go from  back to  

 again. Let’s look again at Example 2,

where x =
⎛

⎝
⎜
1 2 3 4 5 6

3 1 2 4 6 5

We know that x can be written in cycle form as (32)(56). The length  

of  the cycles are 3 and 2. The diagram below illustrates what this means. 

1 2

3

4

6

5

We want to determine the smallest power n such that xn = p

. Let’s label  

the rst cycle of  length 3 as a, and label the second cycle of  length 2 as b.  

Every application or permutation of  x moves the numbers around in a  

cycle so that x would require 3 moves in cycle a to go from  back to .  

In cycle b, x would require 2 moves to go from 5 to 6 and back again.  

This means that both 3 and 2 would need to divide n, the total number  

of  applications of  x. Since we want both 3 and 2 to divide n, and n must  

be the lowest such number, we want the lowest common multiple of  3 and 2,  

which is 6. We have already seen in Example 2 that the order of  x is 6.

From all the previous examples, we can summarize our ndings into  

cycle properties.

Properties of cycle form

● Every permutation can be written as a product of  disjoint cycles.

● Disjoint cycles are commutative.

● The order of  a permutation written as a product of  disjoint cycles  

is the least common multiple of  the lengths of  the cycles.

The proofs of  the above properties are not required for examination purposes,  

and are not included in this course companion but you may decide to prove  

them informally
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Example 

Find the order of  σ =
⎛

⎝
⎜
1 2 3 4 5 6 7 8 9 10

5 1 6 8 4 10 7 2 9 3

σ = (5482)(3 6 0)

The length of  the cycles are 5 and 3.  

Since lcm (3, 5) = 5, the order of  σ is 5.

Write the permutation in cycle form.

Find the lowest common multiple of  the 

lengths of  the cycles.

Let’s now consider permutation composition using cycles. Consider the  

cycles a = (24) and b = (256) in S
6
. We can write these as permutations. 

In cycle a, since 3, 5 and 6 are invariant, a = =
⎛

⎝
⎜( )124
1 2 3 4 5 6

2 4 3 1 5 6

In cycle b, 3 and 4 are invariant, hence b = =
⎛

⎝
⎜( )1256
1 2 3 4 5 6

2 5 3 4 6 1

We already know how to nd the composition of   

these two cycles using permutation composition.  

Let’s concentrate now in nding the product  

through the cycles, i.e. we want ab, or (24)(256)  

in cycle form.

As you already know, for permutation composition we move from 

right to left. The right cycle maps  to 2, and then the left cycle maps 

2 to 4, so the composition maps  to 4. The right cycle then maps  

2 to 5 and the left one maps 5 to 5, so 2 is mapped onto 5. The right 

cycle maps 5 to 6, and the left one maps 6 to 6, so 5 is mapped onto 

6. The right cycle maps 6 to , and the left cycle maps  to 2, so 6 is 

mapped onto 2. 

We can write the permutation a b =
⎛

⎝
⎜

⎞

⎠
⎟

1 2 3 4 5 6

4 5 3 1 6 2
 or (4)(256).

In cycle notation, ab = (24)(256) = (4)(256).

Can we arrive at the result in cycle form without writing out  

the permutation? 

We see that in composing (24)(256), starting on the right cycle,  

 maps onto 2, and 2 maps onto 4 on the left cycle, so  maps onto  

4, and we’ll write this as an unclosed cycle, i.e. with no closing bracket:  

(4. Then in the right cycle, 4 is mapped onto 4, and on the  

left cycle 4 is mapped onto , so now we can close this cycle (4). 

For convenience, at times 

we refer to composition as 

a product, particularly when 

writing it in cycle form.
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Then, the cycle on the right maps 2 to 5, and 5 is invariant in the  

rst cycle, so 2 maps onto 5. We begin this cycle as (25. Then in the  

right cycle 5 maps onto 6, and 6 is invariant in the left cycle, so 5 maps  

onto 6, or (256. Now 6 maps onto , and  maps onto 2 in the left  

cycle, hence 6 maps onto 2, and we now have a full cycle (256).  

Therefore, (24)(256) = (4)(256).

We will now compute b  a or (256)(24). 

Using arrows to indicate a mapping, starting on the right,  → 2,  

then on the left 2 → 5, hence  → 5, or (5. Since 5 is invariant in the  

right cycle, 5 → 5, and on the left 5 → 6, so 5 → 6, or (56. In the right  

cycle, 6 → 6, and on the left 6 → , hence 6 → , so we have a complete  

cycle (56). In the right cycle, 4 → , and on the left  → 2, hence 4 → 2,  

or (42. On the right, 4 →  and on the right  → 2, hence 4 → 2, so we  

have a complete cycle (42). This means the 3 is invariant, and  

b a = (56)(42), or (256)(24) = (56)(42).

We see again that permutation composition is not commutative,  

since a b ≠ b a

Exercise 4B

1 a  Write each of  the following permutations as a product  

of  disjoint cycles.

=
1 2 3 4 5 6

6 3 2 5 1 4
x , =

1 2 3 4 5 6 7 8

3 4 1 2 6 7 8 5
y ,

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

1 2 3 4 5 6 7

1 3 2 5 4 7 6
z

 b Write the inverses of  x, y and z in cycle form.

 c Find the orders of  x, y and z

2 Write the following products of  cycles in permutation form.

a on S
6
: (123)(46)

b  on S
7
: (12)(345)(67)

c on S
8
: (245)(378)

d on S
9
: (3457)(689)

3 Given that α = (136)(24) and β = (1452), both on S
6
,  

nd the following in cycle form:

 a α –1
b αβ c (α β) –1 

d β –1α –1

4 Prove that the order of  a cycle is equal to its length.
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4. Cosets and Lagrange's theorem

We will start this section with an important denition needed to prove  

the theorem you are already familiar with: Lagrange’s theorem.

Denition

Let {H, ∗} be a subgroup of  {G, ∗} and let x ∈G. Then the set of  

elements xH = {xh | h ∈H} is called a left coset of  {H, ∗} in G. 

The set of  elements Hx = {hx | h ∈H} is called a right coset of  

{H, ∗} in G

We will show how this denition works by nding the left and right  

cosets of  the subgroup {3ℤ, +} of  {ℤ, +}.

The left coset of  3ℤ containing x is x + 3ℤ

If  x = 0, then 0 + 3ℤ = {…, −6, −3, 0, 3, 6, …}.

To nd another left coset, let’s take an element that is not in 3ℤ,  

for example . Then,  + 3ℤ = {…, −5, −2, , 4, 7, …}.

Another element not in 3ℤ is 2. Then, 2 + 3ℤ = {…,−4, −, 2, 5, 8, …}.

Now, consider the coset of  k, i.e. k + 3ℤ. If  k ≡ 0(mod 3), then k + 3ℤ = 3ℤ.  

If  k ≡ (mod 3) then k + 3ℤ =  + 3ℤ. If  k ≡ 2(mod 3), then k + 3ℤ = 2 + 3ℤ.  

It should be clear that there are only these three unique cosets.  

Furthermore, these three left cosets partition ℤ into left cosets of  3ℤ

Finding the right cosets in the same manner will yield the exact  

same results. However, since ℤ is Abelian, the left coset k + 3ℤ and  

the right coset 3ℤ + k are the same, hence the partition of  ℤ into right  

cosets is the same as its partition in to left cosets. 

Observe that in general, the equivalence relation R for the subgroup  

{nℤ, +} of  {ℤ, +} is the same as the relation of  congruence modulo n.  

This means that the partition of  ℤ into cosets of  nℤ is the partition  

of  ℤ into residue classes modulo n. (We do not have to distinguish  

left and right cosets since addition is commutative.)

Example 

The group {ℤ
6
, +} is Abelian. Find the partition of  ℤ

6
 into cosets of   

the subgroup H = {0, 3} under addition.

One coset is {0, 3} itself.

 + {0, 3} = {, 4}

2 + {0, 3} = {2, 5}

The cosets are {0, 3},{, 4},{2, 5}.

Find the cosets containing 0, , 2, …

Since these three sets exhaust all of  ℤ
6 
, they are 

the only cosets.
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You will have noticed that for a subgroup {H, } of  an Abelian group {G, },  

the partition of  G into left cosets of  H and the partition of  G into right cosets  

of H are the same.

Example 

Let G = {, α, α2, α3, α4, α5} under complex number multiplication be the cyclic group 

consisting of  the sixth roots of  unity, where α = 
π

3

i

e . Let H = {, α2, α4} be a subgroup  

of  {G, ×}. Find the left cosets of  H

For x ∈G, x = , H = {, α2, α4}  

For x ∈G, x = α, αH = {α, α3, α5}

The only two cosets are:

H = {, α2, α4} and 

αH = {α, α3, α5}

Choose an x ∈ G, e.g. x =  and form the left 

cosets. Then choose another x ∈ G, e.g. x = α

and form the left cosets.

These two cosets partition the group, so all 

other cosets would be identical to one of  these 

two.

Also in Example 5, since every cyclic group is Abelian, the left and  

right cosets will be the same.

We will now list some properties of  cosets which you will undoubtedly  

have noticed in the previous examples.

Theorem 2: Properties of cosets

For any subgroup {H, } of  a group {G, }:

 G is the union of  disjoint cosets of  {H, }, i.e., the group is 

partitioned by the left (or right) cosets of  its subgroup.

  Every coset (left or right) of  a subgroup {H, } has the same 

number of  elements as H.

 Every element of  G lies in one of  the cosets of  H in G

The proofs of  these properties are left as an exercise.

We will now consider an example where the left and right cosets are not the same. 
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Example 

Consider the Cayley table for S
3
 shown in Example , and consider the subgroup {H, } 

such that H = { p

, p

3
}. Find the partitions of  S

3
 into left and right cosets of  H.  

Comment on your results.

p1

1 2 3

1 2 3
=

⎛

⎝
⎜

⎞

⎠
⎟; p2

1 2 3

3 2 1
=

⎛

⎝
⎜

⎞

⎠
⎟;

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
3

1 2 3
;

1 3 2
p

p4

1 2 3

2 1 3
=

⎛

⎝
⎜

⎞

⎠
⎟; p5

1 2 3

3 1 2
=

⎛

⎝
⎜

⎞

⎠
⎟; p

6

1 2 3

2 3 1
=

⎛

⎝
⎜

 p
1

p
2

p
3

p
4

p
5

p
6

p
1

p


p
2

p
3

p
4

p
5

p
6

p
2

p
2

p


p
5

p
6

p
3

p
4

p
3

p
3

p
6

p


p
5

p
4

p
2

p
4

p
4

p
5

p
6

p


p
2

p
3

p
5

p
5

p
4

p
2

p
3

p
6

p


p
6

p
6

p
3

p
4

p
2

p


p
5

The left cosets of  H are:

p
2
H = { p

2
p


, p

2
p

3
} = { p

2
, p

5
}

p
3
H = { p

3
p


, p

3
p

3
} = { p

3
, p


} = H

p
4
H = { p

4
p


, p

4
p

3
} = { p

4
, p

6
}

p
5
H = { p

5
p


, p

5
p

3
} = { p

5
, p

2
} = p

2
H

p
6
H = { p

6
p


, p

6
p

3
} = { p

6
, p

4
} = p

4
H

The partition of  S
3
 into left cosets of  H is either  

[H, p
5
H, p

6
H], [H, p

2
H, p

4
H], [H, p

2
H, p

6
H], or  

[H, p
4
H, p

5
H].

The right cosets of  H are:

Hp
2
 = { p


p

2
, p

3
p

2
} = { p

2
, p

6
}

Hp
3
 = { p


p

3
, p

3
p

3
} = { p

3
, p


}

Hp
4
 = { p


p

4
, p

3
p

4
} = { p

4
, p

5
}

Hp
5
 = { p


p

5
, p

3
p

5
} = { p

5
, p

4
}=Hp

4

Hp
6
 = { p


p

6
, p

3
p

6
} = { p

6
, p

2
} = Hp

2

The partition of  S
3
 into right cosets of  H is either:  

[H, Hp
5
, Hp

6
], [H, p

2
H, p

4
H], [H, Hp

2
, Hp

5
], or  

[H, Hp
4
, Hp

6
].

The partitions into left and right cosets are not the 

same, e.g. p
2
H = {p

2
, p

5
} and Hp

2
 = {p

2
, p

6
} ≠ p

2
H.  

This makes sense since {S
3
, } is not Abelian.

Work out all the possible permutations.

Compose the Cayley table.

Find all the left cosets of  H.

Find all the right cosets of  H.

You need show only one example where 

the partitions into left and right cosets 

are not the same.
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Through the use of  cosets, we are now in a position to prove Lagrange’s  

theorem, which you have already been using in Chapter 3.

Theorem 3: Lagrange's theorem

If  {H, } is a subgroup of  {G, }, then the order of  the subgroup 

{H, } is a divisor of  the order of  {G, }.

Proof:

Let the order of  {G, } be n and the order of  {H, } be m, where m < n. 

Let k be the number of  cells, or sets, in the partition of  {G, } into  

left cosets of  {H, }.

Hence, n = km, since every coset of  H must also have m elements.  

Therefore m is a divisor of  n

It is quite astonishing that this elegant and useful theorem  

comes from simply counting cosets, and the number of   

elements in each coset!

We will now consider two famous corollaries of  Lagrange’s theorem.

Corollary   The order of  an element of  a nite group divides the 

order of  the group.

Proof:

Since the order of  an element is the same as the order of  the cyclic  

subgroup generated by the element, the result follows from  

Lagrange’s theorem.

Corollary   Every group of  prime order is cyclic.

Proof: 

Let {G, } be of  prime order p. Since p >  there is some a ∈ G

such that a ≠ e. Then, the cyclic subgroup of  {G, } generated  

by a contains at least two elements, i.e. it has order m such that m ≥ 2.  

Since by Lagrange’s theorem, m must divide p, then m = p.  

Since {G, } is generated by a, {G, } is cyclic.

In the syllabus, the corollary to Lagrange’s theorem is dened as Corollary .
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Exercise 4C

1 Write out the proofs for the three properties of  cosets.

2 Find the left and right cosets of  the following subgroups:

 a H = {4ℤ, +} of  the group G = {ℤ, +}

 b H = {4ℤ, +} of  the group G = {2ℤ, +}

 c  H which is the set of  elements generated by the element 4 in  

the group {ℤ
12

, +
12

}

 d  Find in cycle form the left and right cosets of  the subgroup {H, },  

H = {(1), (12)}, of  the group G = {S
3
, }, i.e. nd gH and Hg.

3 H = {ℤ
2
 × {0}, +}is a subgroup of  the group {ℤ

2
 × ℤ

3
, +}.  

Let (a, b) + (c, d) = (a + c (mod 2), b + d (mod 3)).

 a List the sets H = ℤ
2
 × {0} and ℤ

2
 × ℤ

3

 b Find the left and right cosets of  H

4 Show that the right cosets of  the subgroup {ℤ
2k

, +
8
}, k ∈ ℤ

8
 of  the  

group {ℤ
8
, +

8
} partitions the group.

5 Let {H, ∗} be a subgroup of  a group {G, ∗}. Prove that if  x ∈yH

then xH = yH

6 Let {H, ∗} be a subgroup of  {G, ∗} and let a ∈G. Prove that  

aH = H if  and only if  a ∈ H

4.  Homomorphisms

In Group Theory, we are interested in the properties induced by the  

inner structure of  groups. We want to make comparisons among  

the groups, and decide which ones have equivalent structures,  

regardless of  the particular sets and binary operations that dene  

particular groups. 

To do this, we dene a relationship between two groups {G, ∗} and  

{H, } in terms of  a mapping that relates the structures of  the groups.  

The groups may be nite or innite.

Denition

Let {G, ∗} and {H, } be groups. A homomorphism is  

a function f : G → H such that f  (x ∗ y) = f  (x)  f  (y) for all x, y ∈G

Essentially this means that the operation ∗ takes place in G while the  

operation  takes place in H. These may or may not be the same  

binary operations. The function therefore denes a relation between  

these two binary operations, and hence between the two group structures.

You are already familiar with many homomorphisms because you 

have actually been using them throughout your mathematics courses, 

without really referring to them as such. Here are some examples:
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 The distributive property of  multiplication over addition in the set  

of  real numbers says that for every real number c, c (x + y) = cx + cy

for all x, y ∈ℝ. In the language of  groups we can say that f
c
: ℝ → ℝ

where f
c
(x) = cx is a homomorphism from {ℝ,+} to {ℝ,+}.

 Another property of  real numbers states that |xy| = |x||y|, for x, y ∈ℝ.  

In the language of  groups, the absolute value function f :ℝ → ℝ

given by f (x) = |x| is a homomorphism from {ℝ\{0}, x} to {ℝ\{0}, x}.

 We know that for all real numbers x and y, (xy)2 = x2y2. Again, in the  

language of  groups, we can say that f :ℝ → ℝ such that f (x) = x2 is  

a homomorphism from {ℝ\{0}, x} to {ℝ\{0}, x}.

 We know that for all real numbers x and y, 2x + y = 2x × 2y. Again, in  

the language of  groups, we can say that f :ℝ → ℝ + such that f (x) = 2x

is a homomorphism between the groups {ℝ, +} and {ℝ +, ×}.

The function denitions in a homomorphism need not be injective  

or surjective. The third bullet point contains the squaring function,  

which is neither surjective nor injective. If  we change the mapping of  the  

sets in the same example to f :ℝ + → ℝ, the function is injective but  

not surjective. If  again we change the function to f :ℝ + → ℝ +, this  

function is bijective.

We will now consider homomorphisms among dierent groups, both nite  

and innite. In the following example, we rst consider a homomorphism  

between an innite group and a nite group.

Example 

Given are the two groups {ℤ, +} and {S, ×} such that S = {, i, −, −i}.

a Show that the function f (x) = i x denes a homomorphism between the two groups.

b Determine if  the function is injective, surjective, both or neither.

c Describe the mapping of  f : ℤ → S as a partition of  {ℤ, +} induced by an equivalence 

relation, and dene the equivalence relation.

a Let m, n ∈ ℤ. Then f  (m + n) = i m+n = i mi n = f (m) f (n), 

hence f is a homomorphism.

b i 4 k, k ∈ℤ → , i.e. 4k = {…, −8, −4, 0, 4, 8, …} → 

i j, j = {…, −7, −3, , 5, 9, …} → i

i r, r = {…, −6, −2, 2, 6, …} → −

i t, t = {…, −5, −, 3, 7, , …} → −i

The mapping is surjective since for all y ∈ S there 

exists an x ∈ Z such that f (x) = y

The mapping is not injective since many dierent 

integers have the same image, for example,  

f (2) = − = f (6).

c {ℤ, +}has been partitioned into the four cosets 4ℤ, 

4ℤ + , 4ℤ + 2, and 4ℤ + 3 by the equivalence 

relation xRy ⇔ f (x) = f ( y).

Use the denition of  

homomorphism.

Use the function to determine the 

elements resulting from the 

mapping.

Describe the mapping and dene 

the equivalence relation.
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For any groups {G, ∗} and {H, } there is always at least one  

homomorphism, namely the trivial homomorphism. The function  

f  : G → H dened as f  (x) = e
H 

maps every element x in G onto the identity  

element in H, e
H
. This function is a homomorphism since  

f (x ∗ y) = e
H
 = e

H
 e

H
 = f (x)  f (y), for x, y ∈ G

We will now dene and prove some properties of  homomorphisms,  

which, loosely speaking, means that the homomorphism preserves  

the identity and inverses.

Theorem 4: Properties of Homomorphisms

Let f  be a homorphism from group {G, ∗} to group {H, }. Let a

be an element in G. Then the following properties hold.

  The homomorphism maps the identity in group G onto the 

identity in group H, i.e. if  e
G
 and e

H
 are the identity elements in 

{G, ∗} and {H, } respectively, then f  (e
G 

) = e
H

  The homomorphism maps the inverse of  an element in group 

G to the inverse of  the element’s image in group H, i.e. for all  

a ∈ G, f  (a−) = ( f  (a))−

  The range of  the homomorphism f is a subgroup of  {H, }, i.e.  

⏐= ∈{( ) ( ) }f G f a a G  is a subgroup of  {H, }.

  The homomorphism preserves all powers, i.e. f  (an) = ( f (a))n for 

all a ∈ G

Proofs:

1 Let f  : G → H  be a homomorphism from group {G, *} to {H, }.  

Then, for all a in G, f  (a) = f  (a ∗ e
G 

) = f  (a)  f  (e
G 

) by denition of   

homomorphism and the identity element e
G
. By denition of  e

H
,  

f  (a)  f  (e
G 

) = f  (a)  e
H
. Therefore by the left cancellation law, f  (e

G 
) = e

H
. 

2 By denition of  inverse and property 1, f  (a ∗ a−1) = f (a−1 
∗ a) = f (e

G 
) = e

H

for all a in G. By denition of  homomorphism,  

f  (a)  f (a−1) = f (a−1)  f  (a) = e
H
 for every a in G. Therefore, by the group  

property of  uniqueness of  inverses, f (a−1) = ( f  (a))−1

3 In order for f  (G) = {  f  (a)|a ∈ G},{  f  (G), } to be a subgroup of  {H, },  

the following properties must hold:

  Closure: This property follows from the denition of  homomorphism,  

and from closure of  {G, ∗}.

 Identity: The range of  f contains the identity, i.e. e
H
 = f  (e

G 
) ∈ f  (G).

  Inverse: This follows from property 2 of  homomorphisms, and from  

the inverses in {G, ∗}.

 So {  f  (G), } is the subgroup of  {H, }.
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The proof  of  property 4 using mathematical induction is left as an exercise.

Property 3 is actually a corollary of part i of a more general theorem. 

The proof of the theorem is left for you to do. 

Let {G, ∗} and {H, } be groups with subgroups {G
0
, ∗} and {H

0
, } respectively. 

If f : G → H is a homomorphism, then 

i f(G
0
) = {f(x) | x ∈ G

0
}, {f(G

0
),  } is a subgroup of {H, }, and 

ii f−1(H
0
) = {x ∈ G | f(x) ∈ H

0
}, {f−1(H

0
), ∗} is a subgroup of {G, ∗}

Example 

Let f  be a homomorphism from group {G, ∗} to {H, }. Furthermore,  

let f  be surjective. Prove that if  {G, ∗} is Abelian, then {H, } is Abelian.

Let c, d ∈ H

Since f  is surjective, there exist elements a, b ∈ G such that  

f (a) = c and f (b) = d. 

By denition of  homomorphism, f (a ∗ b) = f (a)  f  (b) = c  d. 

Furthermore, since {G, ∗} is Abelian,  

f (a ∗ b) = f (b ∗ a) = f  (b)  f  (a) = d  c.  

Hence, c  d = d  c

You need to show that for  

c, d ∈ H, c  d = d  c.

The kernel of a homomorphism

There is no simple way of  showing that a homomorphism between  

two groups is surjective. There is, however, an important theorem  

that is useful in showing that it is injective.

Theorem 5

A homomorphism f :{G, ∗} → {H, } is injective if  and only if  the 

unique solution to f  (x) = e
H
 is x = e

G

Proof:

⇒ :   f (x) = e
H

⇔ f  (x) = f  (e
G
) by Theorem 4 and by the assumption  

that f is injective, x = e
G

⇐ :  Let x = e
G
 be the only solution of  f (x) = e

H
. Suppose that f  (a) = f  (b)  

for a, b ∈ G. Then, f (a) = f  (b) ⇒ f  (a)  f (b)− = e
H

⇒ f (a ∗ b−) = e
H 

.  

Since a ∗ b− = e
G
, a = b and f  is injective.

An injective homomorphism is called a monomorphism, and a surjective 

homomorphism is called an epimorphism.
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In Example 7 we saw how the homomorphism f  (x) = i x from group  

{ℤ, +} to group {S, ×}, S = {, i, −, −i}, partitioned the set of   

integers ℤ according to the image of  each integer in S, i.e. 

{..., −8, −4, 0, 4, 8, ...} → 

{..., −7, −3, , 5, 9, ...} → i

{..., −6, −2, 2, 6, 0, ...} →−

{..., −5, −, 3, 7, , ...} → −i

The set of  elements from ℤ, {…, −8, −4, 0, 4, 8,…}that are mapped  

onto the identity in S, e = , is called the kernel of  the homomorphism f

The following denition therefore shows how the identity appears as  

the value of  a homomorphism.

Denition

Given the group homomorphism f  :{G, ∗} → {H, } the kernel of  

the homomorphism f, ker(  f  ), is dened as the set of  all elements 

of G which are mapped to e
H 

, i.e. ker(  f  ) = {a ∈G|f  (a) = e
H
}.

HG

ker(f ) eH f(G)

f
You saw from the example that the kernel of  f (x) = i x formed a  

subgroup of  {ℤ, +}. We shall now prove this observation.

Theorem 6

The kernel of  a homomorphism f  :{G, ∗} → {H, } is a 

subgroup of  {G, ∗}.

Proof:

We will show that the subgroup properties hold.

Identity: By Theorem 4, f (e
G
) = e

H
⇒ e

G
∈ ker (  f  ).

Closure: Let a, b ∈ ker(  f  ) for some a, b ∈ G. Then, by denitions  

of  homomorphism and kernel, f (a ∗ b) = f  (a)  f  (b) = e
H

 e
H
 = e

H
.  

Hence, a ∗ b ∈ ker(  f  ).

Inverse: Let a ∈ ker(  f  ) for some a ∈ G. Then by property 2 of   

homomorphism, f (a−) = (  f  (a))− = e
H

− = e
H
. Hence, a–

∈ ker ( f  ).

Hence ker(  f  ) is a subgroup of  {G, ∗}, since associative property  

holds for all the elements of  G

As an exercise, you may want to work out the same proof  using a  

dierent subgroup theorem, e.g. show that if  a,b are elements of  ker (  f  ),  

then a ∗ b– is an element of  ker(  f  ).

It is interesting to note that the kernel can be useful in solving  

equations. For example, consider the solutions for the equation z3 = 8i.  

We can change this to an example with homomorphisms. Let us  

consider f  :{ℂ\{0}, × } → {ℂ\{0}, × } such that f  (z) = z3 for z ∈ ℂ\{0}.  

We can easily show that f  is a homomorphism,  

since f  (z

z

2
) = (z


z

2
)3 = z


3z

2
3 = f  (z


) f  (z

2
). Using De Moivre’s theorem, 

we can nd one solution to the equation z3 = 8i, z cis
1

2
6

=
⎛

⎝

π
. 
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The elements of the kernel of the homomorphism are the solutions to the equation 

z3 = , since ker(  f  ) = , f  (z) = z3. Therefore 
π π⎧ ⎫⎛ ⎞ ⎛ ⎞

⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

= =
2 4

3 3
ker( ) 1, ,f K cis cis . 

Hence, the solutions to our original equation are elements of  the coset 

z

K  = 

π π π⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭

5 3

6 6 2
2 , 2 , 2cis cis cis

Exercise 4D

1 a  Show that f  :{ℝ\{0}, ×} → {ℝ\{0}, ×} is a homomorphism,  

and determine the kernel, when:

i f  (x) = |x|   ii f x
x

( ) =

1

 b Show that f  :{ℝ, +} → {ℤ, +} is not a homomorphism when:

i f  (x) = the largest integer ≤x ii f  (x) = x + 1

2 Let {ℝ, +} and {C, +} be groups such that C is the set of  continuous  

functions with domain [0, 1]. Show that f  : C → ℝ, f  (c) = 
0

1

∫ c (x)dx  for 

c ∈ C, is a homomorphism.

3 Given two groups {ℤ, +} and {ℤ
2
, +

2
}, show that f  : ℤ → ℤ

2
 is a  

homomorphism if  for x ∈ℤ, 
∈⎧

= ⎨
∈⎩ o

0, evennumbers
( )

1, ddnumbers

x
f x

x

4 Prove part 4 of  Theorem 4 by mathematical induction.

5 Prove that the composition of  homomorphisms is a homomorphism,  

i.e. if  f  :G → H and g : H → K, then ( g  f  ): G → K is a homomorphism.

6 Let f :{G, ∗} → {H, } be a homomorphism. Prove the inverse  

image of  a subgroup of  {H, } is a subgroup of  {G, ∗}.

7 Let f  :G → H dene a group homomorphism. Let K = ker (  f  ).  

Prove f  −1( f (a)) = {x ∈ G | f  (x) = f  (a)} is the left coset aK of  K and is  

also the right coset Ka of  K, i.e. the two partitions of  G into left  

and right cosets of  K are the same. (Hint: Use the double inclusion  

method for proving two sets are equal.)

4.4 Isomorphisms

In Chapter 3 we saw that there was only one way to construct  

a Cayley table for a group of  order 2 and a group of  order 3. In other  

words, interchanging a row or a column did not change any of  the  

results of  the operation. For example, the Cayley table for a group of   

order 3 is shown next, and beside it is the same table where the columns  

for elements e and b have been interchanged.
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∗ e a b

e e a b

a a b e

b b e a

∗ b a e

e b a e

a e b a

b a e b

A quick check of  the results of  the operations on all elements in the  

2nd table will show that the results are the same as those in the st table.  

Therefore we say that the two tables are structurally equivalent.

We now consider the question “How many dierent groups of  order 4  

are there?” Consider two Cayley tables that you have already seen  

of  two cyclic groups of  order 4: S = {, i, –, –i} under multiplication,  

and {ℤ
4
, +

4
}.

× 1 1 i i

1  – i i

1 –  –i i

i i i – 

i i i  –

+
4

0 1 2 3

0 0  2 3

1  2 3 0

2 2 3 0 

3 3 0  2

Notice the following:

 The orders of  the groups are the same.

 The identity is in the rst row and column of  each table.

 If  we consider a function f  which maps the elements of  the rst group  

to the elements of  the second group as follows,  → 0, i → , – → 2,  

i → 3, we obtain the 2nd table.

 The function f  maps the results of  the binary operation on the  

elements of  the rst table onto the corresponding results of  the binary  

operation in the 2nd table.

To expand upon this last bullet point, let us consider f  (–× i ).  

We see that f (– × i ) = f (–i) = 3, i.e. f : –i → 3.

Furthermore, f (–) + f (i ) = 2 +  = 3, hence f (– × i) = f (–) + f (i ).  

If  you test all the other pairs of  elements you will see that  

f (a × b) = f (a) + f (b), for a, b ∈ S and f (a), f (b) ∈ℤ
4

Additionally we can consider the order of  the elements in the tables. 

These tables show the orders of  the elements in both groups:

{S, ×}

element  i – –i

order  4 2 4

{ℤ
4
, +

4
}

element 0  2 3

order  4 2 4
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As you can see, each of  these groups has an identity, one element of   

order 2, and two generators, i.e. two elements of  order 4.  

The function f maps  → 0, i → , – → 2, –i → 3, i.e. f maps elements  

whose orders are equal onto each other.

We could reconstruct both tables using one of  the generators,  

e.g. i in the rst group and  in the second group.

In the rst group e =  = i 4, and the in second group e = 0 = 4,  

i.e. 4 =  +  +  +  = 4(mod4) = 0.

× e i i 2 i 3

e e i i 2 i 3

i i i 2 i 3 e

i 2 i 2 i 3 e i

i 3 i 3 e i i 2

+
4

e 1 12 13

e e  2 3

1  2 3 e

12 2 3 e 

13 3 e  2

Then, both tables can essentially be expressed by the same table using  

a generator a, and are structurally equivalent to this table.

× e a a2 a3

e e a a2 a3

a a a2 a3 e

a2 a2 a3 e a

a3 a3 e a a2

We could also have achieved the same eect by mapping the generators  

dierently, e.g. f  : −i   and f  : i  3. The identities are still corresponding  

elements, as well as the only element of  order 2 in both groups.  

The mapping of  these elements remains the same, i.e. f  :   0 and f : −  2.  

We leave it to you to construct the Cayley tables using this new mapping,  

i.e. the row and column of  the elements i and –i would need to be  

interchanged. You will notice again that the new Cayley table is  

structurally equivalent to the rst one we constructed. We conclude that all  

cyclic groups of  order 4 are structurally identical. 

Is there a group of  order 4 that is not cyclic, i.e. that is not structurally  

equivalent to the cyclic group of  order 4? Consider the Abelian group  

in Example 9 from Chapter 3:  

{S, ×
2

}, S = {, 5, 7, }. Here is the Cayley table:

×
2

1 5 7 11

1  5 7 

5 5   7

7 7   5

11  7 5 
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The identity is , and the order of  the elements 5, 7 and  is 2.  

This group is clearly not cyclic, although it is Abelian. Therefore this  

group of  order 4 is not structurally equivalent to our two cyclic groups  

of  order 4. In group theory this group is called the Klein four-group,  

or K
V
, where the subscript V stands for the German word for four – vier.  

Its denition is K
V

= {a,b | a2 = b2 = (ab)2 = e}. It is the smallest  

non-cyclic group. Another example of  the K
V
 group is from Chapter 3,  

Exercise 3B, question 7(b), the symmetries of  a rectangle. 

This group is structurally equivalent to {S, ×
2

}. There are only  

two groups of  order 4, the cyclic group and the Klein four-group.  

All groups of  order 4 will be structurally equivalent to one of  these  

two groups, i.e. the cyclic group of  order 4 or the K
V

group.

The Klein 4 - group is the subgroup V (Vierergruppe)  

of the permutation group S
4
. The group consists of  

the following 4 permutations written in cycle notation:  

the identity permutation (1), (12)(34), (13)(24) and  

(14)(23). The group is named after the German  

mathematician Felix Klein, who was an early pioneer  

in Group Theory applied to Geometry. He also devised  

the famous topological gure, the Klein bottle, an  

‘impossible’ gure with no inside. 

We will now dene what we mean by ‘structurally equivalent’.

Denition 

An isomorphism is a bijective homomorphism,  

i.e. given groups {G, ∗} and {H, }, f  : G → H is an isomorphism if   

and only if

i f  is bijective, and

ii f  is a homomorphishm, i.e. for all a, b ∈G,  f  (a ∗ b) = f  (a)  f  (b). 

In other words, to show that two groups are isomorphic, you must  

show that the homomorphism is both injective and surjective.  

The bijection guarantees that the sets have the same size, or cardinality,  

and the homomorphism guarantees that the groups have the  

same structure.

As you have already seen, to show that two nite sets are isomorphic  

we need only show that their Cayley tables are structurally equivalent,  

i.e. their tables can be shown to be structurally the same by rearranging  

or swapping columns or rows.

We will next show a worked-out example for nite sets.
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Example 

a  Determine if  any of  the following three groups are isomorphic by  

constructing their Cayley tables.

● {ℤ
6,
 +

6
}

●   Symmetries of  an equilateral triangle as dened in Chapter 3,  

on page 0, i.e. S = {I, R

, R

2
, A, B, C}

● {ℤ
7
\{0}, ×

7
}

b  Reconstruct the Cayley table(s) to show the equivalent structure of   

the isomorphic groups.

a  Creating the Cayley tables for each group:

+
6

0 1 2 3 4 5

0 0  2 3 4 5

1  2 3 4 5 0

2 2 3 4 5 0 

3 3 4 5 0  2

4 4 5 0  2 3

5 5 0  2 3 4

 I R
1

R
2

A B C

I I R


R
2

A B C

R
1

R


R
2

I C A B

R
2

R
2

I R


B C A

A A B C I R


R
2

B B C A R
2

I R


C C A B R


R
2

I

×
7

1 2 3 4 5 6

1  2 3 4 5 6

2 2 4 6  3 5

3 3 6 2 5  4

4 4  5 2 6 3

5 5 3  6 4 2

6 6 5 4 3 2 
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All three groups have the same order. Since {S, }  

is not Abelian, and the other two groups are, the  

only possibility for an isomorphism is between  

{ℤ
6
, +

6
} and {ℤ

7
\{0}, ×

7
}.

The orders of  the elements in each table are:

a ∈ ℤ
6

0  2 3 4 5

order  6 3 2 3 6

b ∈ ℤ
7

 2 3 4 5 6

order  3 6 3 6 2

The groups are cyclic. The identities are 

corresponding elements, hence 0 ↔ 1. The only 

elements of  order 2 are also corresponding elements, 

so 3 ↔ 6.  

Mapping the generators  ↔ 3 and 5 ↔ 5 leaves two 

possible mappings for the remaining elements: 2 ↔ 2 

and 4 ↔ 4, or 2 ↔ 4 and 4 ↔ 2.  

Mapping the generators  ↔ 5 and 5 ↔ 3 again 

leaves the two possible mappings of  2 ↔ 2 and 4 ↔ 4, 

or 2 ↔ 4 and 4 ↔ 2.

b  Using the rst mapping, we can leave +
6
 as is, and 

reconstruct the ×
7
 table.

×
7

1 3 2 6 4 5

1  3 2 6 4 5

3 3 2 6 4 5 

2 2 6 4 5  3

6 6 4 5  3 2

4 4 5  3 2 6

5 5  3 2 6 4

Notice the structures of  the Cayley 

table, e.g. Abelian.

Determine the orders of  the elements 

in both groups.

Map elements of  similar orders.

Rearrange one of  the tables so

that the corresponding elements

are in the same positions.

How many groups of  order 6 are there? You have worked with the  

cyclic group of  order 6 above. In Chapter 3 you worked with the  

symmetries of  the equilateral triangle, and saw that it formed a  

non-Abelian group of  order 6. From a previous theorem we know  

that if  a group is cyclic, it must be Abelian, or if  a group is not Abelian,  

it cannot be cyclic. Again as with order 4, there are two distinct groups  

of  order 6.
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We can classify nite groups by isomorphism classes, i.e. the number  

of  distinct groups of  a particular order.

● All groups of  prime order are cyclic, hence there is only one class  

of  groups whose order is a given prime number.

● There are two distinct groups or classes of  order 4 and order 6:  

one cyclic group and one non-cyclic group.

● There are ve distinct groups of  order 8, three of  which are cyclic.

● There are two distinct groups of  order 9, and both are cyclic.

● There are two distinct groups of  order 0, one cyclic and one non-cyclic.

Although none of  the above results are needed for examination purposes,  

you might want to research this further and investigate how many classes  

of  groups there are of  a given order greater than .

We shall now illustrate an example showing an isomorphism between innite sets.

Example 

Show that the mapping  f  : x → 2x from the set of  integers ℤ to the set 

{ }= …
1 1 1

8 4 2
, , , 1, 2, 4, 8,S  is an isomorphism between the groups {ℤ, +} and {S, ×}.

Since f  (x + y) = 2x+y = 2x × 2y = f  (x) × f  (y),  

f  denes a homomorphism between  

the two groups.

Method I

f  is injective if  f  (a) = f  (b) ⇒ a = b

2a = 2b
⇒ a = b, hence f  is injective.

Method II

To show f is injective, we can make use of   

Theorem 5, showing that the unique solution  

of  f  (x) = e
s
is e

ℤ
. Assume that the solution is not 

unique, i.e. x ≠ y such that f  (x) = e
s
and f  (y) = e

s

Hence, 2x = 2y
⇒ x = y, which is a contradiction. 

Therefore the solution is unique, and is e
ℤ
 = 0.

f  is surjective if  for every b ∈S there exists an a ∈ℤ

such that f  (a) = b. If  = ⇒ = = ∈2

log

log 2
2 loga b

b a b 

Hence f  is bijective.

Therefore f  is an isomorphism.

Show that f  is a homomorphism, i.e. 

determine if  f  maps the sum of  two 

elements in ℤ to the product of  two 

elements in S.

Show that f  is bijective, i.e.

injective and surjective.
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We see therefore from Example 0 that to show f :{G, ∗} → {H, }  

is an isomorphism, we need to show that:

 f  is a homomorphism

 ker( f ) = e
G
, i.e. f  is injective.

 f  is surjective.

Since an isomorphism is a homomorphism, all the properties of  a  

homomorphism will apply. In addition to these, there is another  

important property specic to isomorphisms which you will already  

have observed in the examples so far.

Theorem 7

If  f :{G, ∗} → {H, } is an isomorphism, the order of  a ∈ G is equal to 

the order of  f (a) ∈ H for every a ∈ G

Proof:

Let n be the order of  a. Therefore by denition, n is the smallest  

positive integer such that an = e. Then:  

(f (a))n = f (a)  f (a)...  f (a)

= ∗ ∗ ∗( )
n times

f a a a…
  by denition of  isomorphism,

= f (an)

= f (e
G
), since the order of  a is n

= e
H

We now must show that n is the least positive integer such that ( f (a))n = e
H

.  

Let the order of  f (a) be m, m < n. Then, by denition, ( f (a))m = e
H

Hence, e
H

is the image of  both an and am. Since am = an = e
G
, and n is  

the smallest such integer, then this is a contradiction with the assumption  

that m < n. Hence n ≤ m and the order of  a ∈ G is the same as the order  

of  f (a) ∈ H

This property is very useful for showing that two groups are not  

isomorphic, i.e. if  the orders of  the elements of  the groups do  

not match, then the groups are not isomorphic. The following example  

illustrates how to use this property.

Example 

Determine whether or not {ℝ, +} and {ℂ \ {0}, ×} are isomorphic.

The only element in ℝ with nite order is the identity, 0, 

whose order is .

In ℂ \ {0}, the identity  has order , and the element – 

has order 2, i.e. there are at least two elements with nite 

order. Hence, the groups are not isomorphic.

Determine if  all elements in both 

groups have the same orders.
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Is the converse of  this theorem true, i.e. if  the orders of  the elements  

of  two groups are the same, are the groups isomorphic? This is  

not true, and the smallest group with this property has order 6,  

i.e. there exist two groups of  order 6 whose elements have the same  

orders but which are not isomorphic. You may want to research  

this very important result further.

Exercise 4E

1 Determine which of  the following groups of  order 6 are isomorphic.

 a The symmetry group of  the equilateral triangle

 b The set {1, 2, 4, 5, 7, 8} under ×
9

 c The set {2, 4, 6, 8, 10, 12} under ×
14

d The permutation group with the following elements:

p
1

1 2 3 4 5

1 2 3 4 5
=

⎛

⎝
⎜

⎞

⎠
⎟ ; p2

1 2 3 4 5

4 5 3 1 2
=

⎛

⎝
⎜

⎞

⎠
⎟; p

3

1 2 3 4 5

3 2 4 1 5
=

⎛

⎝
⎜

p
4

1 2 3 4 5

4 2 1 3 5
=

⎛

⎝
⎜

⎞

⎠
⎟; p

5

1 2 3 4 5

3 5 1 4 2
=

⎛

⎝
⎜ ; p

6

1 2 3 4 5

1 5 4 3 2
=

⎛

⎝
⎜

2 Prove that the mapping f  : ℝ + 
→ ℝ, f  (x) = ln x, is an isomorphism  

between the groups {ℝ +, ×} and {ℝ, +}.

3 Prove that the mapping  f  : x  x−1 is an isomorphism of  a group {G, ∗}  

onto itself  if  and only if  {G, ∗} is Abelian.

4 Let {H, } be a subgroup of  {G, ∗}, and let M = {x−1hx | h ∈ H} be a  

subset of  G for some given element x ∈G

 a  Prove that M is closed under the operation ∗ of  the group G and  

that each element of  M has an inverse under ∗ in M.  

Hence, deduce that M is a subgroup.

 b Show that M is isomorphic to H

5 Let (ab) denote a cycle dened by the permutation 
a b

b a

 a  Consider the permutations on the set {1, 2, 3, 4}. Let p
1
 = (1),  

p
2
 = (12)(34), p

3
 = (13)(24) and p

4
 = (14)(23) be four of  these  

permutations. Write out the Cayley table for the set  

P = { p
1
, p

2
, p

3
, p

4
} under composition of  permutations.

 b Prove that {P, } is an Abelian group.

 c Determine whether or not {P, } is isomorphic to {ℤ
4
,+

4
}.

6 Given that two groups {G, ∗} and {H, } are isomorphic, prove that  

{G, ∗} is Abelian if  and only if  {H, } is Abelian.
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Review exercise

EXAM-STYLE QUESTIONS

1. a  Let G be a group of  order 6 such that it contains no elements of   

order 6. State Lagrange’s theorem and hence prove by contradiction  

that at least one of  the elements will have order 3.

 b  Let G be of  order n, and g be an element of  G that has order k.  

Write down a cyclic subgroup of  order k and use Lagrange’s  

theorem to show that gn = e

2 a  Let {
n
, +

n
} be the cyclic group of  integers under +

n
. Write down  

the elements of  this group, and identify a generator for the group.

 b  Let {
n
, ×} be the group whose elements are the nth roots of   

unity under multiplication. Write down the elements of  this  

group, and show that the group is cyclic. Write down a generator 

of  the group.

 c  Show that f  :{
n
, +

n
} → {

n
, × }, 

π

= ∈

2

( ) , n

ix

nf x e x

is an isomorphism.

3 Let G be a set of  isomorphic groups, i.e. G
1
≡ G

2
 (G

1
 is isomorphic to G

2
)  

for all G
1
,G

2
∈ G. If  f  : G

1
→ G

2
, show that the relation on G dened  

by ≡ is an equivalence relation.

4 Prove that the mapping f  : x  x2 is an isomorphism of  a group {G, ∗}  

if  and only if  {G, ∗} is Abelian.

5 Prove that if  f  :{G, ∗} → {G, ∗} is a homomorphism with kernel K then  

f  (x) = f  ( y) if  and only if  y = xk for some k ∈K

6 Let G be the group of  permutations S
3
 and H is a subgroup of   

G such that H = {(1), (12)}. Find the left and right cosets of  H in G

7 Let G be a group. Prove that the relation on G dened as xRy ⇔ x = y or  

x = y−1 is an equivalence relation, and write down the equivalence classes.

8 Prove that the groups {, +} and {+, ×} are isomorphic.

9 a Show that {S, ×}, S = {2a3b | a, b = }, a, b ∈  forms a group.

 b  Show that {S, ×} is isomorphic to the group {, +},  

 = {a + bi | a, b ∈ Z, i = 1}.

10 Express p = (13256)(23)(46512) as a product of  disjoint cycles.

11 Explain why f  : 
12
→ 

10
, f  (x) = 3x (mod 10) is not a homomorphism.

12 Given the permutation group S
3
, nd a subgroup {H, } and an element  

of  g such that gH ≠ Hg

13 Let G ={\{0}, ×}.

a Show that f : x  x n is a homomorphism for all n ∈ +. 

b Determine ker(  f
n
).

c Determine n so that the mapping is an isomorphism.

14 Let S be the set of  polynomials in x with real coecients under addition.  

Dene the mapping  f  : p(x)  P (x) = p x dx( )∫  such that P (0) = 0.  

Show that f  is a homomorphism, and determine its kernel.
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Chapter  summary
A permutation of  a non-empty nite set A is a bijection from A to A

Theorem 1: Let A be a non-empty set of  n elements, and let S
n
 be the set of  all 

permutations of  A. Then S
n
 forms a group under composition of  permutations.

Let A be the nite set {, 2, 3, …, n}. The group of  all permutations of  A is the 

symmetric group on n elements and is denoted by S
n

Permutations and cycle form

 Every permutation can be written as a product of  disjoint cycles.

 Disjoint cycles are commutative.

 The order of  a permutation written as a product of  disjoint cycles is  

the least common multiple of  the lengths of  the cycles.

Let {H, ∗} be a subgroup of  {G, ∗} and let x ∈ G. Then the set of  elements  

xH = {xh•h ∈ H} is called a left coset of  {H, ∗} in G. The set of  elements  

Hx = {hx•h ∈H} is called a right coset of  {H, ∗} in G. 

Properties of cosets: For any subgroup {H, } of  a group {G, }:

1 G is the union of  disjoint cosets of  {H, }.

2 Every coset (left or right) of  a subgroup {H, } has the same number of  elements as H.

3 The group is partitioned by the left (or right) cosets of  its subgroup.

4 Every element of  G lies in one of  the cosets of  H in G

Lagrange’s theorem: If  {H, } is a subgroup of  {G, }, then the order  

of  the subgroup {H, } is a divisor of  the order of  {G, }.

Corollaries to Lagrange’s theorem: 

1 The order of  an element of  a nite group divides the order of  the group.

2 Every group of  prime order is cyclic.

Let {G, ∗} and {H, } be groups. A homomorphism is a function f : G → H such that  

f (x ∗ y) = f (x)  f ( y) for all x, y ∈ G

Properties of homomorphisms: Let f  be a homomorphism from group {G, ∗} to group 

{H, }. Let a be an element in G. Then the following properties hold.

1 The homomorphism maps the identity in group G onto the identity in group H,  

i.e. if  e
G
 and e

H
are the identity elements in {G, ∗} and {H, } respectively,  

then f (e
G

) = e
H

2 The homomorphism maps the inverse of  an element in group G to the inverse of  the 

element’s image in group H, i.e. for all a ∈ G, f (a−1) = ( f (a))−1

3 The range of  the homomorphism f is a subgroup of  {H, }, i.e. for  

f (G) = { f (a)•a ∈ G}, { f (a), } is a subgroup of  {H, }. 

4 The homomorphism preserves all powers, i.e. f (an) = ( f (a))n for all a ∈ G. 
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Theorem: A homomorphism f  :{G, ∗} → {H, } is injective if  and only if  the 

unique solution to f  (x) = e
H
 is x = e

G
. 

Given the group homomorphism f  :{G, ∗} → {H, } the kernel of  f, ker( f  ),  

is dened as the set of  all elements of  G which are mapped to e
H

,  

i.e. ker( f  ) = {a  ∈ G•f  (a) = e
H
} 

Theorem: The kernel of  a homomorphism f  :{G, ∗} → {H, } is a subgroup of  G

Given the groups {G, ∗} and {H, },  f  : G → H is an isomorphism if  and only if

i f  is bijective, and 

ii f  is a homomorphism, i.e. for all a, b ∈ G, f  (a ∗ b) = f  (a)  f  (b). 

Theorem: If  f  :{G, ∗} → {H, } is an isomorphism, the order of  a ∈ G
is equal to the order of  f  (a)  ∈ H
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Answers
Chapter 1
Skills check

1 a 24

Exercise A

1 a A \ B = {b, c, d} 

b B \ A = {i, o, u} 

 c A Δ B = {b, c, d, i, o, u} 

d (A ∩ B) \ (A ∩ C) = {a, e}

e A ∩ (B ∪ C) = {a, b, c, d, e}

Exercise B

1 Many examples possible, such as:

 P = {{red cards},{black cards}}

P = {{number cards}, {picture cards}}

2 a P is a partition.

 b Q is not a partition.

 c  B is not a partition since 2 is an element 

of  both sets.

3 a Partition b Partition c Partition

4 Many examples possible such as 

 a {{x ∈¥, x ≤ 10}, {x ∈¡| x ∉ {0, 1, 2, 3,…,10}}}

  or {{π, e}, { π| ,x x x e  }}

b ∈ ∈ ∉  { | }, { | , }x x x x x

   or {{primes}, {x|x ∈ R, x is not a prime 

number}}

c {..., [ 3, 2[, [ 2, 1[, [ 1, 0[, [0, 1[, [1, 2[,

[2, 3[, ...

− − − − −

}}

Exercise C 

6 a 

A

A Δ B

B

A B

U

A' Δ B'

Exercise D

1 A × B = {(1, p), (1, q), (2, p), (2, q), (3, p), (3, q)}

B × A = {( p, 1), ( p, 2), ( p, 3), (q, 1), (q, 2), (q, 3)}

The two products are not equal since the  

Cartesian product is made up of  ordered pairs  

and hence (1, q) ≠ (q, 1) etc…

2 a Tabulate the Cartesian product A × B

A × B 1 2 3 4 5 6

1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

  The ordered pairs in bold represent × ⊂ ×A A A B

 b i {(1,1), (1, 2), (1, 4), (1, 6), (2,1), (2, 3), (2, 5),

(3, 2), (3, 4), (4,1), (4, 3)}

R =

ii R = {( , ), ( , )}1 1 2 4

iii {(1, 3), (1, 4), (1, 6), (2, 4), (2, 5), (3, 5),

(3, 6), (4, 6)}

R =

iv R = {( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ),

( , ), ( , ), (

1 1 1 2 1 3 1 4 1 5 2 1 2 2

2 3 2 4 33 1 3 2 3 3 4 1 4 2, ), ( , ), ( , ), ( , ), ( , )}

3 A B a p a q b p b q× = {( , ), ( , ), ( , ), ( , )}

n A B n P A B( ) ( ( ))× = ⇒ × = =4 2 164

4 a A B a a a b b b× = {( , ), ( , ), ( , ), ( , ), ( , ), ( , )}1 2 3 1 2 3

A C a a b b× = {( , ), ( , ), ( , ), ( , )}3 4 3 4

( ) ( ) {( , ), ( , )}A B A C a b×  × = 3 3

b B C∩ = { }3

   A B C a b( ) {( , ), ( , )}3 3

c (A × B) ∩ (A × C ) = A × (B ∩ C )

5 A C a c a A c C× =  {( , )| , }

B C b c b B c C× =  {( , )| , }

 Since A ⊂ B it follows that a ∈ A ⇒ a ∈ B

⇒ ∈ ×( , )a c B C  for all ∈ ∈, .a A c C

 Therefore × ⊂ ×A C B C

6 List the Cartesian product S × S

S × S 0 2 4 6 8

0 (0, 0) (0, 2) (0, 4) (0, 6) (0, 8)

2 (2, 0) (2, 2) (2, 4) (2, 6) (2, 8)

4 (4, 0) (4, 2) (4, 4) (4, 6) (4, 8)

6 (6, 0) (6, 2) (6, 4) (6, 6) (6, 8)

8 (8, 0) (8, 2) (8, 4) (8, 6) (8, 8)

The elements of  R are the ordered pairs in bold.
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10 R = {(2, 1), (4, 2), (8, 3), (16, 4), (32, 5), (64, 6), 

(128, 7), (256, 8), (512, 9), (1024, 10)}

⇒ =
1

2

ln

ln 2
log =

x
xR y y x

=
1( ) 10n R

Exercise E

1 Since R is reexive, symmetric and transitive it 

follows that it is an equivalence relation.

2 Since R is reexive, symmetric and transitive it 

follows that it is an equivalence relation.

3 Since R is not transitive it follows that it is not an 

equivalence relation.

4 Since R is not reexive and not transitive it 

follows that it is not an equivalence relation.

5 Since R is reexive, symmetric and transitive it 

follows that it is an equivalence relation.

9 One example from not reexive or not symmetric 

is enough to show that R is not an equivalence 

relation. 

10 Since R is reexive, symmetric and transitive it 

follows that it is an equivalence relation

Exercise F

1 a The equivalence classes induced by R: 

[set] = {set, car, sea, sun}

[bike] = {bike, wave}

[table] = {table, chair}

[tennis] = {tennis, stairs}

b The equivalence classes induced by R: 

[set] = {set, stairs, sea, sun}

[table] = {table, tennis}

[chair] = {chair, car}

[bike] = {bike}

[wave] = {wave}

2 a R partitions the set of  line segments into sets 

of  segments of  equal length.

b R partitions the set of  all polygons into sets 

of  polygons with same number of  sides, 

i.e. {triangles}, {quadrilaterals}, etc…

3 R partitions the set of  parabolas into sets 

containing parabolas with vertex tangent to the 

line y = c. 

4 The relation partitions ¡ × ¡ into concentric 

circles with centre at the origin.

5 Equivalence classes:

[ ] { | , } { , , , ,...}1 2 3 1 4 7 10= + = ∈ =
+

x x k k 

[ ] { | , , } { , , ,...}2 4 3 2 2 5 8= + = ∈ ≥ =
+

x x k k k

[ ] { | , , } { , , ,...}3 6 3 3 3 6 9= + = ∈ ≥ =
+

x x k k k

6 Equivalence classes

[ ] { | , } { , , , , , , , ...}1 1 3 1 2 4 5 7 8 10 112
= − = ∈ =

+

x x k k 

[ ] { | , } { , , , , ....}3 3 3 3 6 9 12 152
= − = ∈ =

+

x x k k 

7 R partitions the Cartesian plane into lines parallel 

to the y-axis.

8 = = =[(1, 2)] {( , ) |2 } {(1, 2), (2, 4), (3, 6), (4, 8)...}x y x y

= = =( )[ , ] {( , )| } {( , )}
b

a
a b x y bx ay x x , which represents 

sets of  straight lines passing through the origin.

9 = = = ∈
1

( )[ 1,1 ] {( , )| 1} {( , )| \{0}}
x

x y xy x x

= = = ∈( )[ , ] {( , )| } {( , )| \{0}}
ab

x
a b x y xy ab x x , which 

represents a set of  rectangular hyperbolas with 

the x and y axes as asymptotes.

10 b [ ] { | }0 0= − ∈ =x x  

c { }
{ }

⎡ ⎤
⎢ ⎥⎣ ⎦

− − −

= − = ∈

=


3 3

4 4

9 5 1 3 7 11

4 4 4 4 4 4

| ,

..., , , , , , , ...

x x n n

d
a

b

a

b

nb a

b

x x n n

x x n

⎡
⎣⎢

⎤
⎦⎥ { }

+{ }
= − = ∈

= = ∈

| ,

| ,





R partitions ¤ into fractions with denominator 

b and numerator an innite arithmetic 

progression depending on a and with 

common dierence b.

Review Exercise

1 i

A B

U

A \ B

B

U

A ∩ (U\B)

A

In the lower of  the two diagrams above, the area 

shaded in both directions represents A U B∩ ( \ )
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ii Similarly, Venn diagrams demonstrating 

two expressions that are each the symmetric 

dierence of  A and B.

2 Venn Diagrams suitably drawn to show

i A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )

ii A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )

3 b The relation R partitions the Argand 

diagram into lines passing through the 

origin, since for every each particular angle, 

θ, all the complex numbers having θ as an 

argument lie on a straight line passing 

through the origin and make an angle θ

with the positive real axis.

4 a A = {2, 3, 5, 7, 11, 13, 17, 19} 

B = {1, 2, 3}

C = {0, 1, 2, 3}

D = {−2, 0, 2}

E = {−1, 0, 1, 2, 3}

b i True because n(A) = 8, n(D) = 3, n(E ) = 5

ii False because D A∩ = −{ , }2 0

( ') 2n D A⇒ ∩ =

iii True as evident from list above.

iv True D \ B = {−2, 0} and neither of  these 

elements are in A

v False C E C E C EΔ = ∪ ∩ = −( ) \ ( ) { }1

5 a i R is not reexive

ii R is symmetric

iii R is not transitive.

b R is not an equivalence relation because it is 

not reexive and it is also not transitive.

6 a Since R is reexive, symmetric and transitive 

it is an equivalence relation.

b i C x x0

30 0 5 5 10 15 20= = ≡ =[ ] { | (mod )} { , , , ...}

ii C x x x x k1

3 31 1 5 5 1= = ≡ = = +[ ] { | (mod } { | }

= {6, 11, 16, 21, 26, 31, ...}

7 a ii [z2 – 3z + 4] consists of  all polynomials of  

the form z2 – 3z + c

b ii [z2 – 3z + 4] consists of  all polynomials of  

the form z2 + bz + 4 

8 b [2] = {2, 4, 6, …} 

[1] = {1, 3, 5, 7…}

c 5355 ≡ 5(mod 8) 

9 b First consider the equivalence class [(a, 0)] where a

is a constant

[ ] = = − = = ± ± ±( , 0) {( , )| , 0 5 } {0, 5, 10, 15, ...}a x y x a y k

[ ] = = − = = − − −( ,1) {( , ) | , 1 5 } {..., 14, 9, 4,1, 6,11,...}a x y x a y k

[ ] = = − = = − − −( , 2) {( , )| , 2 5 } {..., 13, 8, 3, 2, 7,12,...}a x y x a y k

[ ] = = − = = − − −( , 3) {( , )| , 3 5 } {..., 12, 7, 2, 3, 8,13,...}a x y x a y k

[ ] = = − = = − − −( , 4) {( , )| , 4 5 } {..., 11, 6, 1, 4, 9,14,...}a x y x a y k

10 S is not transitive.

11 b AB R CD if  and only if  AB and CD are 

parallel line segments of  the same length 

and oriented in the same direction. Thus an 

equivalence consists of  all translations of  

a given directed line segment.

Chapter 2
Skills Check

1 a 0 < t < 3 b t > 3 

2 a ≠
1 (3 2 )

( 1)
( ) where 1

x

x
f x = x b f x

x
=

1

2
( )

ln

ln

c ( )= +1 21
+

2
( ) ln 8f x x x

Exercise A

2 a Not a function b Not a function

c Not a function

3 a Is a function b Not a function

c Not a function

5 a not surjective b injective

6 i injective, not surjective

ii injective, not surjective

iii injective and surjective

8 i surjective, not injective

ii surjective, not injective

iii not surjective, not injective

9 a Range −1 < f (x) < 1

b

2

y

x
–2

0
–4–6–8–10

–2

2 4 6 8 10
–1

1

10 a f is not surjective b f is injective

c g is surjective d g is injective
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Exercise B

1 = ( , )g f a b b

3 a i f g x x ( ) =
2

ii g f x x ( ) = 2

b f g is not injective and not surjective g f is 

injective and surjective

4 a f −1(n, 1) = n + 1

c f g n m n m ( , ) ( , )= + −1 1 , g f n n ( ) =

5 a not injective and not surjective therefore not 

bijective.

b f f x y xy x y x xy y ( , ) ( ( ), )= + + +

6 b f g x
x

 ( ) =
1

1
g f x

x

x
 ( ) =

1

d f and g are both self  inverses

e f  g and g  f are inverses of  each other

7 b = 3 3
1( , ) ,

y y

x x
f x y x

8 a f ′(x) = 8e 2x > 0 for all [ [∈ ∞1,x

b f x
x= +⎛

⎝
⎜

⎞

⎠
⎟

1 3

4
( ) ln

9 a

5

10

y

x

–5
–15–20

–10

5 10 15 20

f (x) = ln x

f (x) = 
x

e

b The function is steadily increasing over the 

whole range and so it is a bijection.

c 1 e 1
( )

e 1x

x x
f x

x

⎧
⎪
⎨
⎪⎩

≤
=

>

10 a i ¢ ii {0} 

b −1

c k = 1 ⇒ solutions (1, 0) and (−1, 0)

k = 2 ⇒ no solutions

11 a 16 – n(mod 8) = −n(mod 8) 

b
n

2
8 if  n is even

|n − 7| if  n is odd

c 8
2

n
 if  n is even

17 − n if  n is odd

d
2
(mod8)

n
 if  n is even

1 – n(mod8) if  n is odd

e | –n(mod8) − 8|

f
2

n  if  n is even

|9 − n| if  n is odd

12 a e(ln(2x−1))2

b ln(2ex2

 − 1)

c 2 ln (2x − 1) d e4(ln(2x−1))2

e 2e(ln(2x−1))2

Exercise C

1 a ( ) ( )= − = +
2

3
( ) 2, ( ) nof g x x g f x x 

b ( ) ( )= =( ) , ( )f g x x g f x x yes 

c ( ) ( )= =( ) , ( )f g x x g f x x yes 

2 a f −1(x) = ex

b f x
x x

x x
=

⎧
⎨
⎩

1( )
if is rational

if is irrational

3 a i f g x x( ) =
1
( ) arccos(ln )

ii g f x x− −( ) =1 1
 ( ) arccos(ln )

Exercise D

1 a Binary operation – not closed

b Binary operation – closed

c Binary operation – closed

d Binary operation – closed

2 S is not closed under addition or multiplication 

or division

3 i A is closed under addition and multiplication

ii B is not closed under addition but closed 

under multiplication

4 ∗ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Closed Closed

5 X is closed under addition 

X is closed under subtraction

X is closed under composition 

6 × − −

− − −

− −

− −

− − −

1 1

1 1 1

1 1 1

1 1

1 1

i i

i i

i i

i i i

i i i

7 ¢+ is closed under ∗

8 ∗ 1 2 3

1 1 1 1

2 3 4 5

3 5 7 9

 1 2 3

1 1 1 2

2 1 1 2

3 2 2 4

Not closed Not closed
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9 Not closed under addition

 Closed under multiplication

10 a S × S = {(1, 1), (1, 2), (2, 1), (2, 2)}

b ∗ 1 2

1 3 6

2 6 12

Not closed

c 
 ( , ) ( , ) ( , ) ( , )1 1 1 2 2 1 2 2

12 6 6 6 12

)) ( , ) ( , )12 6 12 12

Exercise E

1 a not commutative not associative

b commutative not associative

c not commutative not associative

3  f f f f

f f f f f

f f f f f

f f f f f

f f f f f

1 2 3 4

1 1 2 3 4

2 2 1 4 3

3 3 4 1 2

4 4 3 2 1

 From Cayley table we can see that S is closed 

because every element in Cayley table is in S

 Composition of  functions is commutative 

because the main diagonal of  the Cayley table is 

a line of  symmetry.

4 a not commutative b not associative.

Exercise F

1 commutative associative e = 0 

2 commutative associative e = (1, 1)

3 commutative associative e = (0, 0)

4 not commutative associative  e = (1, 0)

5 commutative associative no identity

Exercise G

1 b Identity = −1

 c Inverse a−1 = −a − 2 

2 c Identity = 1

 d Inverse ( )a bi
a bi

a b
+ =

+

1

2 2

3 * 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

 The main diagonal is a line of  symmetry, so the 

operation  is commutative.

 Identity e = 0

 Inverse of  0 is 0

 Inverse of  1 is 3

 Inverse of  2 is 2

 Inverse of  3 is 1

4 a 2 4 6 8

2 4 8 2 6

4 8 6 4 2

6 2 4 6 8

8 6 2 8 4

  Identity e = 6

  Inverse of  6 is 6

  Inverse of  2 is 8

  Inverse of  4 is 4

  Inverse of  8 is 2

b Identity e = 2

  Inverse a
a

=
1 4

c There is no identity.

6 b a

Review Exercise

3 Bijection

( )2

1

1
( , ) , arcsin

x

y
f x y y=

4 Identity e = (1, 0)

6 a  Not injective and not surjective.

b   The function f  becomes invertible when 

the domain is restricted to [0, π) and the  

co-domain to [
1

2
, 19

6
].

f x
x

=

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

1

6
3

( ) arccos
ln( )

ln

7 a i commutative

  ii associative

b Identity e = 0

8 a Range 1 1
1
2

2+ +⎡

⎣⎢
⎤

⎦⎥e

e,

b i Not injective since f  (x) = f  (x + 2nπ), n ∈ ¢

ii  Not surjective since the range of  f  (x) ≠ ¡

   e.g. there is no x ∈ ¡ such that f  (x) = 10.

c i k = π, A e
e

= + +⎡

⎣⎢
⎤

⎦⎥
1 1

1
2

2,

ii g x x= −( )1 1( ) arccos ln

iii 
2

21

e
1 , 1 ex
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Chapter 3

Skills check

1 a
2( ( )) ln( 1)f g x x= + b = −

1
( ( )) 1xf g x e

c
2( ( )) [ln( 1)]g f x x= + d

1 1( ( )) 1xf g x e 

= 

2 a  The binary operation on the given set is  

closed. No other properties hold.

 b  The binary operation on the given set is 

closed and commutative.

 c  The binary operation on the given set is 

closed and commutative.

Exercise A

3 a not a group

b not a group

c is a group

d is a group

4 c
5

3

5 b i (1, 2) ii (0.75, 2.8)

 c not Abelian

Exercise B

1 a
∗ e x y z

e e x y z

x x y z e

y y z e x

 z z e x y

b i y ii e

2 a i e ii e

iii b iv c

b The identity element is a.

c right inverses

x a b c d e

x − a d b c e

  left inverses

x a b c d e

x − a c d b e

d  Left and right inverses are not equal;  

∗ is not associative.

4 {Z
5
, +

5
}:

+
5

0  2 3 4

0 0  2 3 4

  2 3 4 0

2 2 3 4 0 

3 3 4 0  2

4 4 0  2 3

 {Z
5
 \ {0}, ×

5
}:

×
5

 2 3 4

  2 3 4

2 2 4  3

3 3  4 2

4 4 3 2 

a x = 4 b x = 4 c x = 3

d x = 1 e x = 2

5 
×

10
2 4 6 8

2 4 8 2 6

4 8 6 4 2

6 2 4 6 8

8 6 2 8 4

It does form an Abelian group.

6 ±1; ±
1 1

2 2
(1 3)(1 3); ii ± −+

7 a R = reection in the median

I = R2

° I R

I I R

R R I

b Symmetries of  the Rectangle

I : Identity Transformation

X : Reection in the x-axis

Y : Reection in the y-axis

H : Rotation of  180 degrees about its center.

° I X Y H

I I X Y H

X X I H Y

Y Y H I X

H H Y X I
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c Symmetries of  a cuboid

I: Identity transformation

X: Reection in the y z plane

Y: reection in the x z plane

Z: reection in the x y plane

H
1
: rotation of  180 degrees about x-axis

H
2
: rotation of  180 degrees about y-axis

H
3
: rotation of  180 degrees about z-axis

C: central inversion

° I X Y Z H


H
2

H
3

C

I I X Y Z H


H
2

H
3

C

X X I H
3

H
2

C Z Y H


Y Y H
3

I H


Z C X H
2

Z Z H
2

H


I Y X C H
3

H


H


C Z Y I H
3

H
2

X

H
2

H
2

Z C X H
3

I H


Y

H
3

H
3

Y X C H
2

H


I Z

C C H


H
2

H
3

X Y Z I

9
+

2
(0, 0) (0, ) (, 0) (, )

(0, 0) (0, 0) (0, ) (, 0) (, )

(0, ) (0, ) (0, 0) (, ) (, 0)

(, 0) (, 0) (, ) (0, 0) (0, )

(, ) (, ) (, 0) (0, ) (0, 0)

{Z
2
 × Z

2
, +

2
} does form a group.

Exercise C

3 b x3

Exercise D

1 a {∅, A}; {∅, B}; {∅, C}

b {p, r}

c Symmetries of  the Rectangle

I: identity Transformation

X: Reection in the x-axis

Y: Reection in the y-axis

H: Rotation of  180 degrees about its center.

° I X Y Z

I I X Y Z

X X I H Y

Y Y H I X

Z H Y X I

Subgroups: {I, X }; {I, Y }; {I, H }

d {8, 10}; {4, 10, 16}

e {0, 3}; {0, 2, 4}

2 a
a  2 4 7 8  3 4

a−  8 4 3 2  7 4

order  4 2 4 4 2 4 2

b a = 4; b = 8

c {1, 4, 7, 13} or {1, 4, 11, 14}

Exercise 3E 

4 a 20; (0, 1) b (1, 1); (1, 2)

c 4 elements have order 4: (0, 1); (0, 3); 

(1, 1); (1, 3)

Review exercise

1 a 1 b x = 
7

4

3 a x = a−1cb−1 b x = b−1a

5 a f x
x4 1
1

( ) = − ; f x f
x

x

x5 6

1

1 1
( ) ; ( )= =x

b Let f
1
 = 1; f

2
 = 2; etc.

°  2 3 4 5 6

  2 3 4 5 6

2 2  4 3 6 5

3 3 5  6 2 4

4 4 6 2 5  3

5 5 3 6  4 2

6 6 4 5 2 3 

c
f  2 3 4 5 6

order  2 2 3 3 2

d { f
1
, f

4
, f

5
}

7 a order = 3; order = 12; order = 4

b 1, 5, 7 and 11

8 b The operation # is closed, associative 

and has an identity e = –1. Not all elements 

have inverses.

10 Order of  the group is 6.

Subgroups: {e}, {e, a, a2}; {e, b}; {e, ab}; 

{e, a2b}; {e, a, a2, b, ab, a2b}

11 Many answers possible, such as:

∗ e a b c d f

e e a b c d f

a a e c d f b

b b c e f a d

c c d f e b a

d d f a b e c

f f b d a c e

The Latin Square is not associative.
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Chapter 4
Skills check

1 a R partitions Z into two sets: even integers and 

odd integers.

b Each ordered pair (a, b) ∈ Z × Z belongs to 

an equivalence class consisting of  all ordered 

pairs with integer coordinates lying on a 

vertical line passing through (a, b).

c The partition of  S induced by R is {{1, 5, 9}, 

{2, 6, 10},{3, 7},{4, 8}}

3 a not bijective

b
1 2 2
( , ) ,

5 5

a b a b
f a b

+ −⎛ ⎞= ⎜ ⎟
⎝ ⎠

Exercise A

2 3

3
1 2 3 1 2 3 1 2 3

, , .
1 2 3 2 3 1 3 1 2

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

Both 
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 2 3 1 2 3
and

2 3 1 3 1 2
 are generators.

4 a i
1 2 3 4 5

=
3 4 1 2 5

ii τσ
1 2 3 4 5

=
1 4 5 2 3

iii
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

2
1 2 3 4 5

=
4 1 5 3 2

iv −1
1 2 3 4 5

=
2 4 3 1 5

v ( )συ
1

1 2 3 4 5
=

4 1 3 2 5

vi υ συ
1

1 2 3 4 5
=

5 4 2 1 3

b i
1 2 3 4 5

=
5 2 3 1 4

x

ii
1 2 3 4 5

=
4 1 2 5 3

x

Exercise B

1 a x = (1645)(23); y = (13)(24)(5678); 

z = (23)(45)(67)

b x −1 = (1546)(23); y −1 = (13)(24)(5876); 

z −1 = (23)(45)(67)

c order = 4; order = 4; order = 2

2 a
1 2 3 4 5 6

2 3 1 6 5 4

⎛

⎝
⎜

b
1 2 3 4 5 6 7

2 1 4 5 3 7 6

⎛

⎝
⎜

c
1 2 3 4 5 6 7 8

1 4 7 5 2 6 8 3

⎛

⎝
⎜

⎞

⎠
⎟

d
1 2 3 4 5 6 7 8 9

1 2 4 5 7 8 3 9 6

⎛

⎝
⎜

⎞

⎠
⎟

3 a (163)(24)

b (1236)(45)

c (1632)(45)

d (1632)(45)

Exercise C

2 a Left cosets: 4Z; 1 + 4Z; 2 + 4Z; 3 + 4Z

Right cosets are the same as the left cosets.

b Left cosets: 4Z; 2 + 4Z

Right cosets are the same as the left cosets.

c H = {0, 4, 8}

Left cosets: H; 1 + H = {1, 5, 9}; 

2 + H = {2, 6, 10}; 3 + H = {3, 7, 11}

Right cosets are the same as left cosets.

d

x ∈G Left coset xH Right coset Hx

() {(), (2)} {(), (2)}

(3) {(3), (23)} {(3), (32)}

(23) {(23), (32)} {(23), (23)}

3 a H = {(0, 0), (1, 0)}; Z
2
 x Z

3
 = {(0, 0), (1, 0), 

(0, 1), (1, 1), (0, 2), (1, 2)}

b Left cosets: H = {(0, 0), (1, 0)}; 

(0, 1) + H = {(0, 1), (1, 1)}; 

(0, 2) + H = {(0,2), (1,2)}. 

Right cosets are the same as the left cosets.

Left and right cosets are equal: Z
2
 × {0}; 

Z
2
 × {1}; Z

2
 × {2}

Exercise D

 a i {−,} ii {} 

Exercise E

1 a and d; b and c

5 a Let p
1
 = 1; p

2
 = 2; p

3
 = 3; p

4
 = 4

° 1 2 3 4

1 1 2 3 4

2 2 1 4 3

3 3 4 1 2

4 4 3 2 1

c The groups are not isomorphic.
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Review exercise

2 a {0, 1, 2, …, n − 1}; 1 is a generator.

b {1, ω, ω 
2, …, ω 

n−1}; ω is a generator.

6 right cosets: {e, (12)}; {(13), (132)}; {(23), (123)}

 left cosets: {e, (12)}; {(13), (123)}; {(23), (132)}

7 [x] = {x, x−1}

10 (124)(35)

12 H = {(1), (12)} and g (13), for example.

13 b
{ }

{ }
1 if is odd

ker( )
1, 1 if is even

n

n
f

n

⎧⎪
= ⎨
⎪⎩

 c f
n

is an isomorphism when n is odd.

14 ker( f  ) only contains the zero polynomial.
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Index

A

Abel, Niels Henrik 88, 89

Abelian groups 89, 121

associative law 17, 45

associativity 76, 85, 143

B

bijection 52, 127, 154

binary operations 72–5, 85

denition 73

properties of  binary 

operations 76–7

Bourbaki, Nicolas 47

C

cancellation laws 81, 105–8, 122

Theorem 10 81–2

Cantor, Georg 3, 4, 47

cardinality 4, 44

Cartesian plane 21, 22

Cartesian product of  two sets

21–22, 45

denition 22

Cauchy, Augustin-Louis 47, 126

Cayley tables 73, 97, 144–7

Cayley, Arthur 73, 97

chemistry 104

classication of  groups 124–5, 153

cosets and Lagrange’s 

theorem 135–9, 154

group structures 126

homomorphisms 139–44, 154–5

isomorphisms 144–52, 155

permutation groups 126–30

permutations and cycle 

form 130–2, 154

properties of  cycle form 132–4

co-domains 48, 84

Cohen, Paul 3

commutativity 76, 80, 85

complement sets 7, 15, 44

composition of  functions 59–61, 85

Theorem 2 59

Continuum Hypothesis 3

contrapositive statements 50

cosets 135–9, 154

denition 135

Theorem 2: properties of  

cosets 136, 154

cycle form 130–2

length of  a cycle 132

properties of  cycle form 132–4

cyclic groups 114–19, 122

cyclic subgroups 117, 123

denition 115, 117

Theorem 10 118

Theorem 6 116

Theorem 7 116–17

Theorem 8 117

Theorem 9 117

D

De Morgan’s Laws 16, 20

associative law 20

distributive law 20

Dedekind, Richard 47

Descartes, René 21

disjoint sets 7, 15, 44

distributivity 76

domains 48, 84

E

elements 48

inverse of  an element 79–81, 85

empty set 4, 44

epimorphism 142

equal sets 5–12

axiom 6

denitions 6

equality of  functions 50–8

denition 50, 51, 52

Theorem 1 55–7

equivalence classes 32–42, 45

denition 33

Theorem 6 35

equivalence relations 25–27, 45

denition 25

Euler diagrams 14

Euler, Leonhard 14, 47

F

nite groups 94–7, 122

denition 94

nite order 112, 122

nite sets 9

function 46, 83–4

bijective functions 52

binary operations 72–5, 85

cancellation laws 81–3

composition of  functions 59–61, 

85

equality of  functions 50–8

evolution of  the function 

concept 47

functions as relations 48–50

identity element e 78–9, 85

identity functions 56, 70–2, 85

injective functions 50, 84

inverse functions 61–5

inverse of  an element 79–81,  

85

onto functions 51

properties of  binary 

operations 76–7

properties of  functions 66–9

surjective functions 51, 84

G

Galois, Evariste 88, 89

generators 115

Global Positioning Systems 

(GPS) 22

Gödel, Kurt 3

group structures 126

Group Theory 88–89

groups 89–90, 121

Abelian groups 89, 121

Cayley tables 97

cyclic groups 114–19, 122

nite groups 94–7, 122

generators 115

groups of  integers modulo n

98–100, 121

innite groups 90–4

investigation 92

Latin Square 96, 97, 121

order 94, 112, 121, 122

right and left cancellation 

laws 81, 85, 105–8, 122

subgroups 108–13

symmetry groups 100–5, 121

Theorem 1 106–7

Theorem 4 112–13

Theorem 5 113

H

Hilbert, David 3

Hilbert Hotel 4

homomorphisms 139–42, 154–5

denitions 139, 143

injective homomorphisms

142

kernel of  a homomorphism

142–4, 155

surjective homomorphisms

142

Page numbers in italics refer to review exercises.
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homomorphisms (continued)

Theorem 4: properties of  

homomorphisms 141, 154

Theorem 5 142, 155

Theorem 6 143, 155

trivial homomorphisms 141

I

identity element e 78–9, 85

denition 78

Theorem 8 78

identity functions 56, 70–2, 85

denition 70

Theorem 6 70

Theorem 7 70

improper subgroups 110, 121

innite groups 90–4, 122

innite order 112

injective functions 50, 84

injective homomorphisms 142

integers modulo n 98–100, 121

intersection of  two sets 7, 44

inverse functions 61–5

denition 61

Theorem 3 61–2

inverse of  an element 79–81, 85

denition 79

Theorem 9 80

inverse relations 23

Islamic art 87

isometries 103

isomorphisms 144–52, 155

denition 147

Theorem 7 151, 155

K

Klein bottle 147

Klein-4 group 147

Klein, Felix 147

L

Lagrange, Louis 126

Lagrange’s Corollary 118

Lagrange’s theorem 135, 138, 154

theorem 3 138

Latin Square 96, 97, 121

left cancellation law 81, 85, 105–8, 

122

left cosets 135, 154

Leibniz, Gottfried Wilhelm 47

M

modular arithmetic 98, 121

modular congruence 27–31, 45

denition 29

Theorem 5 29–30

monomorphisms 142

N

Noether, Emily 89, 126

O

onto functions 51

order 94, 112, 121, 122

P

partitions 12–14, 32–42, 45

denition 12

permutation groups 126–30

denitions 127, 129

identity permutation 129

permutations and cycle 

form 130–4, 154

symmetric groups 129

Theorem 1 129, 154

power set P(S) 9

proper subgroups 110, 121

properties of  binary 

operations 76–7

denitions 76

properties of  functions 66–9

investigation 67

properties of  composite 

functions 68

Theorem 4 66

Theorem 5 67

R

range 48, 84

reexive relations 25

relations 23–24

denition 23

equivalence relations 25–27,  

45

functions as relations 48–50

inverse relations 23

modular congruence 27–31, 45

reexive relations 25

symmetric relations 25

transitive relations 25

right cancellation law 81, 85, 

105–8, 122

right cosets 135, 154

Russell, Bertrand 11

Russell’s Paradox 11

S

set dierence 5–12, 15, 44

denitions 7

set properties 16–21

Theorem 1 17

Theorem 2 17

Theorem 3 17–18

Theorem 4 18–19

set theory 2, 42–4, 47

Cartesian product of  two 

sets 21–22

equivalence classes and 

partitions 32–42, 45

language of  sets 3–4

partitions 12–14

power set P(S) 9

relations 23–32

Russell’s Paradox 11

set denitions and operations

4–5

set properties 16–21

Venn diagrams 14–16

well-dened sets, equal sets and 

set dierence 5–12

subgroups 108–13, 121

cyclic subgroups 117, 123

denition 108, 110

improper subgroups 110, 121

proper subgroups 110, 121

Theorem 2 109, 122

Theorem 3 111

trivial subgroups 110, 121

surjective functions 51, 84

surjective homomorphisms

142

symmetric dierence 7, 15, 44

symmetric groups 129, 154

symmetric relations 25

symmetry groups 100–5, 121

T

transitive relations 25

trivial homomorphisms 141

trivial subgroups 110, 121

U

union of  two sets 7, 44

universal set 7

universal theory of  everything

86–87, 119–20

cyclic groups 114–19

Group Theory 88–89

groups 89–105

properties and theorems of  

groups and subgroups

105–114

V

Venn diagrams 14–16

Venn, John 14

W

well-dened sets 5–12

denitions 5

Weyl, Hermann 88
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